分析 使用正弦定理將邊化角,化簡(jiǎn)得出tanB和tanC的關(guān)系,代入兩角差的正切公式使用基本不等式得出最大值.
解答 解:∵3bcosC-3ccosB=a,∴3sinBcosC-3sinCcosB=sinA=sin(B+C)=sinBcosC+cosBsinC,
∴sinBcosC=2cosBsinC,
∴tanB=2tanC.
∴tan(B-C)=$\frac{tanB-tanC}{1+tanBtanC}$=$\frac{tanC}{1+2ta{n}^{2}C}$=$\frac{1}{\frac{1}{tanC}+2tanC}$≤$\frac{1}{2\sqrt{2}}=\frac{\sqrt{2}}{4}$.
故答案為:$\frac{\sqrt{2}}{4}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的恒等變換,正弦定理,屬于中檔題,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 320 | B. | 360 | C. | 384 | D. | 390 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3$\sqrt{2}$ | B. | -3$\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | -2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com