一個(gè)袋中有若干個(gè)大小相同的黑球、白球和紅球。已知從袋中任意摸出1個(gè)球,得到黑球的概率是;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是。
(Ⅰ)若袋中共有10個(gè)球,
(i)求白球的個(gè)數(shù);Ks5u
(ii)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望
(Ⅱ)求證:從袋中任意摸出2個(gè)球,至少得到1個(gè)黑球的概率不大于。并指出袋中哪種顏色的球個(gè)數(shù)最少。

解:(Ⅰ)當(dāng)時(shí),,則=
,的單調(diào)遞減區(qū)間是
(II)∵,∴
是函數(shù)的兩個(gè)不同的極值點(diǎn),則是方程的兩個(gè)不同的實(shí)數(shù)根,
,且
,即
,即,則
  ,又
(舍)
當(dāng)時(shí),, 是增函數(shù);當(dāng)時(shí),, 是減函數(shù);Ks5u
取到最大值, ,又的根,

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)袋中有若干個(gè)大小相同的黑球、白球和紅球.已知從袋中任意摸出1個(gè)球,得到黑球的概率是
2
5
;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是
7
9

(Ⅰ)若袋中共有10個(gè)球,從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為ξ,求隨機(jī)變量ξ的數(shù)學(xué)期望Eξ.
(Ⅱ)求證:從袋中任意摸出2個(gè)球,至少得到1個(gè)黑球的概率不大于
7
10
.并指出袋中哪種顏色的球個(gè)數(shù)最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)袋中有若干個(gè)大小相同的小球,分別編有一個(gè)1號(hào),兩個(gè)2號(hào),m個(gè)3號(hào)和n個(gè)4號(hào).已知從袋中任意摸出2個(gè)球,至少得到1個(gè)4號(hào)球的概率是
23
.若袋中共有10個(gè)球,
(i)求4號(hào)球的個(gè)數(shù);
(ii)從袋中任意摸出2個(gè)球,記得到小球的編號(hào)數(shù)之和為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題14分)一個(gè)袋中有若干個(gè)大小相同的黑球、白球和紅球。已知從袋中任意摸出1個(gè)球,得到黑球的概率是;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是。

(Ⅰ)若袋中共有10個(gè)球,

(i)求白球的個(gè)數(shù);

(ii)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望。

(Ⅱ)求證:從袋中任意摸出2個(gè)球,至少得到1個(gè)黑球的概率不大于。并指出袋中哪種顏色的球個(gè)數(shù)最少。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(浙江卷理19)一個(gè)袋中有若干個(gè)大小相同的黑球、白球和紅球。已知從袋中任意摸出1個(gè)球,得到黑球的概率是;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是。

(Ⅰ)若袋中共有10個(gè)球,

(i)求白球的個(gè)數(shù);

(ii)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望。

(Ⅱ)求證:從袋中任意摸出2個(gè)球,至少得到1個(gè)黑球的概率不大于。并指出袋中哪種顏色的球個(gè)數(shù)最少。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年浙江省嘉興市高二5月月考理數(shù) 題型:解答題

一個(gè)袋中有若干個(gè)大小相同的黑球、白球和紅球。已知從袋中任意摸出1個(gè)球,得到黑球的概率是;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是。

    (Ⅰ)若袋中共有10個(gè)球,

(i)求白球的個(gè)數(shù);

(ii)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望。

(Ⅱ)求證:從袋中任意摸出2個(gè)球,至少得到1個(gè)黑球的概率不大于。并指出袋中哪種顏色的球個(gè)數(shù)最少。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案