在數(shù)列中,,,

(Ⅰ)計(jì)算,的值;

(Ⅱ)猜想數(shù)列的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明.

 

【答案】

(Ⅰ)解:由題意,得,                3分

(Ⅱ)解:由,猜想                    5分

以下用數(shù)學(xué)歸納法證明:對(duì)任何的

證明:①當(dāng)時(shí),由已知,左邊,右邊,等式成立。7分

②假設(shè)當(dāng)時(shí),成立,

時(shí),

所以當(dāng)時(shí),猜想也成立。              12分

根據(jù)①和②,可知猜想對(duì)于任何都成立。                     13分

【解析】本試題主要是考查了數(shù)列的通項(xiàng)公式的求解和數(shù)學(xué)歸納法證明的運(yùn)用。

(1)利用一種的遞推關(guān)系可知得到前幾項(xiàng),然后歸納猜想其通項(xiàng)公式。

(2)運(yùn)用數(shù)學(xué)歸納法證明的時(shí)候注意n=k和n=k+1之間的變換,以及假設(shè)的運(yùn)用。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列中{an},a1=1,3anan-1+an-an-1=0(n≥2,n∈N*)
(1)求數(shù)列{an}的通項(xiàng);
(2)若λan-an+1≤0對(duì)任意的正整數(shù)N恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,an∈N+,對(duì)于任意n∈N+,an≤an+1,若對(duì)于任意正整數(shù)K,在數(shù)列中恰有K個(gè)K出現(xiàn),求a50=
10
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,且滿足等式an+2Sn=3.
(1)能否在數(shù)列中找到按原來順序成等差數(shù)列的任意三項(xiàng),說明理由;
(2)能否從數(shù)列中依次抽取一個(gè)無限多項(xiàng)的等比數(shù)列,且使它的所有項(xiàng)和S滿足
9
160
<S<
1
13
,如果這樣的數(shù)列存在,這樣的等比數(shù)列有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•盧灣區(qū)一模)已知數(shù)列{bn},若存在正整數(shù)T,對(duì)一切n∈N*都有bn+r=bn,則稱數(shù)列{bn}為周期數(shù)列,T是它的一個(gè)周期.例如:
數(shù)列a,a,a,a,…①可看作周期為1的數(shù)列;
數(shù)列a,b,a,b,…②可看作周期為2的數(shù)列;
數(shù)列a,b,c,a,b,c,…③可看作周期為3的數(shù)列…
(1)對(duì)于數(shù)列②,它的一個(gè)通項(xiàng)公式可以是an =
a   n為正奇數(shù)
b    n為正偶數(shù)
,試再寫出該數(shù)列的一個(gè)通項(xiàng)公式;
(2)求數(shù)列③的前n項(xiàng)和Sn
(3)在數(shù)列③中,若a=2,b=
1
2
,c=-1,且它有一個(gè)形如bn=Asin(ωn+φ)+B的通項(xiàng)公式,其中A、B、ω、φ均為實(shí)數(shù),A>0,ω>0,|φ|<
π
2
,求該數(shù)列的一個(gè)通項(xiàng)公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列中{an},它的前n項(xiàng)和Sn=1-nan(n∈N+),則數(shù)列{an}的通項(xiàng)公式為
1
n(n+1)
1
n(n+1)

查看答案和解析>>

同步練習(xí)冊(cè)答案