下列四個(gè)結(jié)論中,正確結(jié)論為( 。
A.當(dāng)x>0且x≠1時(shí),lgx+
1
lgx
≥2
B.當(dāng)x>0時(shí),
x
+
1
x
≥2
C.當(dāng)x≥0時(shí),x+
1
x
的最小值為2
D.當(dāng)x>0時(shí),x3+
1
x
的最小值為2
對(duì)于A,變量lgx不一定是正數(shù),故A錯(cuò)
對(duì)于B,x>0,∴
x
>0
,∴
x
+
1
x
≥2
當(dāng)且僅當(dāng)x=1時(shí)取等號(hào),故B對(duì)
對(duì)于C,x不能取0,故C錯(cuò)
對(duì)于D,例如x=
2
3
x3+
1
x
=
97
54
<2,故D錯(cuò)
故選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某工廠有A、B兩種配件生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一種甲產(chǎn)品使用4個(gè)A配件耗時(shí)1h,每生產(chǎn)一件乙產(chǎn)品使用4個(gè)B配件耗時(shí)2h,該廠每天最多可從配件廠獲得16個(gè)A配件和12個(gè)B配件,按每天8h計(jì)算,若生產(chǎn)一件甲產(chǎn)品獲利2萬(wàn)元,生產(chǎn)一件乙產(chǎn)品獲利3萬(wàn)元,采用哪種生產(chǎn)安排利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)y=
1
x-3
+x(x
>3)的最小值為( 。
A.4B.3C.2D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知x,y∈(0,+∞),
1
x
+
3
y+2
=3
,則3x+y的最小值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列各式中,對(duì)任何實(shí)數(shù)x都成立的一個(gè)是( 。
A.
1
x2+1
≤1
B.lg(x2+1)≥lg2x
C.x2+1>2xD.x+
1
x
≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,有一邊長(zhǎng)分別為8與5的長(zhǎng)方形,在各角剪去相同的小正方形,把四邊折起作成一個(gè)無(wú)蓋小盒,要使紙盒的容積最大,求剪去的小正方形的邊長(zhǎng)及容積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義f(M)=(m,n,p),其中M是△ABC內(nèi)一點(diǎn),m、n、p分別是△MBC、△MCA、△MAB的面積,已知△ABC中,
AB
AC
=2
3
,∠BAC=30°,f(N)=(
1
2
,x,y)
,則
1
x
+
4
y
的最小值是( 。
A.8B.9C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩條直線l1:y=m和l2:y=
8
2m+1
(m>0),l1與函數(shù)y=|log2x|的圖象從左至右相交于點(diǎn)A,B,l2與函數(shù)y=|log2x|的圖象從左至右相交于點(diǎn)C,D.記線段AC和BD在X軸上的投影長(zhǎng)度分別為a,b,當(dāng)m變化時(shí),
b
a
的最小值為( 。
A.16
2
B.8
2
C.8
34
D.4
34

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知0<a<b,且a+b=1,下列不等式中,正確的是( 。
A.log2a>0B.2a-b
1
2
C.log2a+log2b<-2D.2
a
b
+
b
a
<4

查看答案和解析>>

同步練習(xí)冊(cè)答案