【題目】已知有窮數(shù)列:,,,……,的各項(xiàng)均為正數(shù),且滿足條件:
①;②.
(1)若,,求出這個(gè)數(shù)列;
(2)若,求的所有取值的集合;
(3)若是偶數(shù),求的最大值(用表示).
【答案】(1);(2);(3).
【解析】
試題分析:(1)根據(jù)通項(xiàng)公式求具體的項(xiàng);(2)根據(jù)題意分類討論,列出所有可能的情況建立關(guān)于的方程;(3)假設(shè)從到恰用了次遞推關(guān)系,根據(jù)的奇偶性分類討論.
試題解析:
解:由①知;由②知,,整理得解得,或,當(dāng)時(shí),不滿足舍去;∴這個(gè)數(shù)列為;
若,由①知,∵
,如果由計(jì)算沒有用到或者恰用了次,顯然不滿足條件;∴由計(jì)算只能恰好次或者次用到,共有下面4種情況:
, ,,則,解得;
若,,,則,解得;
若,,,則,解得;
若,,,則,解得;
綜上,的所有取值的集合為;
依題意,設(shè),由知,,假設(shè)從到恰用了次遞推關(guān)系,用了次遞推關(guān)系,則有其中,
當(dāng)是偶數(shù)時(shí),,無正數(shù)解,不滿足條件;
當(dāng)是奇數(shù)時(shí),由得,
,又當(dāng)時(shí),若,,
有,,即∴的最大值是,即.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品均需用兩種原料,已知每種產(chǎn)品各生產(chǎn)噸所需原料及每天原料的可用限額如下表所示,如果生產(chǎn)噸甲產(chǎn)品可獲利潤3萬元,生產(chǎn)噸乙產(chǎn)品可獲利萬元,則該企業(yè)每天可獲得最大利潤為___________萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間及所有零點(diǎn);
(2)設(shè),,為函數(shù)圖象上的三個(gè)不同點(diǎn),且
.問:是否存在實(shí)數(shù),使得函數(shù)在點(diǎn)處的切線與直線平行?若存在,求出所有滿足條件的實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)共有1000名文科學(xué)生參加了該市高三第一次質(zhì)量檢查的考試,其中數(shù)學(xué)成績?nèi)缦卤硭荆?/span>
數(shù)學(xué)成績分組 | [50,70) | [70,90) | [90,110) | [110,130) | [130,150] |
人數(shù) | 60 | 400 | 360 | 100 |
(Ⅰ)為了了解同學(xué)們前段復(fù)習(xí)的得失,以便制定下階段的復(fù)習(xí)計(jì)劃,年級將采用分層抽樣的方法抽取100
名同學(xué)進(jìn)行問卷調(diào)查. 甲同學(xué)在本次測試中數(shù)學(xué)成績?yōu)?5分,求他被抽中的概率;
(Ⅱ)年級將本次數(shù)學(xué)成績75分以下的學(xué)生當(dāng)作“數(shù)學(xué)學(xué)困生”進(jìn)行輔導(dǎo),請根據(jù)所提供數(shù)據(jù)估計(jì)“數(shù)
學(xué)學(xué)困生”的人數(shù);
(III)請根據(jù)所提供數(shù)據(jù)估計(jì)該學(xué)校文科學(xué)生本次考試的數(shù)學(xué)平均分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 上有一點(diǎn)列過點(diǎn)在x軸上的射影是,且1+2+3+…+n=2n+1-n-2. (n∈N*)
(1)求數(shù)列{}的通項(xiàng)公式
(2)設(shè)四邊形 的面積是,求
(3)在(2)條件下,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,且.點(diǎn)
是棱的中點(diǎn),平面與棱交于點(diǎn).
(1)求證:∥;
(2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 “中國式過馬路”是網(wǎng)友對部分中國人集體闖紅燈現(xiàn)象的一種調(diào)侃,即“湊夠一撮人就可以走了,和紅綠燈無關(guān).”出現(xiàn)這種現(xiàn)象是大家受法不責(zé)眾的“從眾”心理影響,從而不顧及交通安全.某校對全校學(xué)生過馬路方式進(jìn)行調(diào)查,在所有參與調(diào)查的人中,“跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”人數(shù)如表所示:
跟從別人闖紅燈 | 從不闖紅燈 | 帶頭闖紅燈 | |
男生 | 800 | 450 | 200 |
女生 | 100 | 150 | 300 |
(Ⅰ)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n人,已知“跟從別人闖紅燈”的人抽取了45 人,求n的值;
(Ⅱ)在“帶頭闖紅燈”的人中,將男生的200人編號為1,2,…,200;將女生的300人編號為201,202,…,500,用系統(tǒng)抽樣的方法抽取4人參加“文明交通”宣傳活動,若抽取的第一個(gè)人的編號為100,把抽取的4人看成一個(gè)總體,從這4人中任選取2人,求這兩人均是女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com