【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對該校名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評價(jià)為鍛煉達(dá)標(biāo)

1)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表:

并通過計(jì)算判斷,是否能在犯錯誤的概率不超過的前提下認(rèn)為鍛煉達(dá)標(biāo)與性別有關(guān)?

2)在鍛煉達(dá)標(biāo)的學(xué)生中,按男女用分層抽樣方法抽出人,進(jìn)行體育鍛煉體會交流.

i)求這人中,男生、女生各有多少人?

ii)從參加體會交流的人中,隨機(jī)選出人發(fā)言,記這人中女生的人數(shù)為,求的分布列和數(shù)學(xué)期望.

參考公式:,其中

臨界值表:

0.10

0.05

0.025

0.010

0

2.706

3.841

5.024

6.635

【答案】1)能;(2)(i)男生有人,女生有人;(ii,分布列見解析.

【解析】

1)根據(jù)所給數(shù)據(jù)可完成列聯(lián)表.由總?cè)藬?shù)及女生人數(shù)得男生人數(shù),由表格得達(dá)標(biāo)人數(shù),從而得男生中達(dá)標(biāo)人數(shù),這樣不達(dá)標(biāo)人數(shù)隨之而得,然后計(jì)算可得結(jié)論;

2)由達(dá)標(biāo)人數(shù)中男女生人數(shù)比為可得抽取的人數(shù),總共選2人,女生有4人,的可能值為0,12,分別計(jì)算概率得分布列,再由期望公式可計(jì)算出期望.

1)列出列聯(lián)表,

所以在犯錯誤的概率不超過的前提下能判斷課外體育達(dá)標(biāo)與性別有關(guān).

2)(i)在鍛煉達(dá)標(biāo)的學(xué)生中,男女生人數(shù)比為,

用分層抽樣方法抽出人,男生有人,女生有人.

ii)從參加體會交流的人中,隨機(jī)選出人發(fā)言,人中女生的人數(shù)為,

的可能值為,,,

,,

可得的分布列為:

可得數(shù)學(xué)期望

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,若的夾角為,則直線與圓的位置關(guān)系是(

A.相交但不過圓心B.相交且過圓心C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)存在兩個(gè)極值點(diǎn),,且,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),.

1)判斷函數(shù):的單調(diào)性;

2)對于區(qū)間上的任意不相等實(shí)數(shù)、,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)設(shè),

①當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

②當(dāng)時(shí),求證:對任意恒成立.

2)討論的極值點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長均相等的四棱錐, 為底面正方形的中心, ,分別為側(cè)棱,的中點(diǎn),有下列結(jié)論正確的有:( )

A.∥平面B.平面∥平面

C.直線與直線所成角的大小為D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱的側(cè)棱垂直于底面, ,點(diǎn)分別是的中點(diǎn).

(1)證明:平面;

(2)設(shè),當(dāng)為何值時(shí),平面,試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的奇偶性,并說明理由;

2)已知不等式上恒成立,求實(shí)數(shù)的最大值;

3)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , .

(Ⅰ)證明: ;

(Ⅱ)若直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案