已知直線l1:4x-3y+6=0和直線l2x=- (p>2).若拋物線Cy2=2px上的點到直線l1和直線l2的距離之和的最小值為2.
(1)求拋物線C的方程;
(2)若拋物線上任意一點M處的切線l與直線l2交于點N,試問在x軸上是否存在定點Q,使Q點在以MN為直徑的圓上,若存在,求出點Q的坐標;若不存在,請說明理由.

(1)y2=4x(2)存在定點Q(1,0),使Q在以MN為直徑的圓上.

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,O為坐標原點,A(-2,0),B(2,0),點P為動點,且直線AP與直線BP的斜率之積為-.
(1)求動點P的軌跡C的方程;
(2)過點D(1,0)的直線l交軌跡C于不同的兩點MN,△MON的面積是否存在最大值?若存在,求出△MON的面積的最大值及相應的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點為橢圓的右焦點,且橢圓的長軸長為4,M、N是橢圓上的的動點.
(1)求橢圓標準方程;
(2)設(shè)動點滿足:,直線的斜率之積為,證明:存在定點使
為定值,并求出的坐標;
(3)若在第一象限,且點關(guān)于原點對稱,垂直于軸于點,連接 并延長交橢圓于點,記直線的斜率分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

命題:方程表示的曲線是焦點在y軸上的雙曲線,命題:方程無實根,若為真,為真,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C的中心為平面直角坐標系xOy的原點,焦點在x軸上,它的一個頂點到兩個焦點的距離分別是7和1.
(1)求橢圓C的方程;
(2)若P為橢圓C上的動點,M為過P且垂直于x軸的直線上的一點,λ,求點M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在坐標原點O,左頂點,離心率為右焦點,過焦點的直線交橢圓、兩點(不同于點).
(1)求橢圓的方程;
(2)當的面積時,求直線PQ的方程;
(3)求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若兩個橢圓的離心率相等,則稱它們?yōu)椤跋嗨茩E圓”.如圖,在直角坐標系xOy中,已知橢圓C1=1,A1A2分別為橢圓C1的左、右頂點.橢圓C2以線段A1A2為短軸且與橢圓C1為“相似橢圓”.
 
(1)求橢圓C2的方程;
(2)設(shè)P為橢圓C2上異于A1,A2的任意一點,過PPQx軸,垂足為Q,線段PQ交橢圓C1于點H.求證:H為△PA1A2的垂心.(垂心為三角形三條高的交點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知A,B,C是橢圓Wy2=1上的三個點,O是坐標原點.
(1)當點BW的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(2)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點、,動點滿足:,且
(1)求動點的軌跡的方程;
(2)已知圓W: 的切線與軌跡相交于P,Q兩點,求證:以PQ為直徑的圓經(jīng)過坐標原點.

查看答案和解析>>

同步練習冊答案