5.若數(shù)列{an}滿足a1=-1,n(an+1-an)=2-an+1(n∈N*),則數(shù)列{an}的通項(xiàng)公式是an=2-$\frac{3}{n}$.

分析 n(an+1-an)=2-an+1(n∈N*),化為(n+1)an+1-nan=2,利用等差數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵n(an+1-an)=2-an+1(n∈N*),
∴(n+1)an+1-nan=2,
則數(shù)列{nan}是等差數(shù)列,首項(xiàng)為-1,公差為2.
∴nan=-1+2(n-1)=2n-3,
∴an=2-$\frac{3}{n}$.
故答案為:2-$\frac{3}{n}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知△ABC的三內(nèi)角A,B,C滿足sin(π-A)=$\sqrt{2}$cos(B-$\frac{π}{2}$),$\sqrt{3}$cosA=-$\sqrt{2}$cos(π+B),求角A,B,C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年廣東清遠(yuǎn)三中高二上學(xué)期第一次月考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

如圖所示,直四棱柱內(nèi)接于半徑為的半球,四邊形為正方形,則該四棱柱的體積最大時(shí),的長(zhǎng)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在如圖所示的幾何體中.EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE=2,M是AB的中點(diǎn).
(Ⅰ)求證:DM⊥平面EMC;
(Ⅱ)求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在等差數(shù)列{an}中,a3+a5=12-a7,則a1+a9=( 。
A.8B.12C.16D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某游戲網(wǎng)站為了了解某款游戲玩家的年齡情況,現(xiàn)隨機(jī)調(diào)查100位玩家的年齡整理后畫出頻率分布直方圖如圖所示.
(1)求100名玩家中各年齡組的人數(shù),并利用所給的頻率分布直方圖估計(jì)該款游戲所有玩家的平均年齡;
(2)若已從年齡在[35,45),[45,55)的玩家中利用分層抽樣選取6人組成一個(gè)游戲聯(lián)盟,現(xiàn)從這6人中選出2人,求這兩人在不同年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在一次數(shù)學(xué)考試中,數(shù)學(xué)課代表將他們班50名同學(xué)的考試成績(jī)按如下方式進(jìn)行統(tǒng)計(jì)得到如下頻數(shù)分布表(滿分為100分)
 成績(jī)[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)
 人數(shù) 215 15 
(Ⅰ)在答題卡上作出這些數(shù)據(jù)中的頻率分布直方圖;
(Ⅱ)估計(jì)該班學(xué)生數(shù)學(xué)成績(jī)的中位數(shù)和平均值;
(Ⅲ)若按照學(xué)生成績(jī)?cè)趨^(qū)間[0,60),[60,80),[80,100)內(nèi),分別認(rèn)定為不及格,及格,優(yōu)良三個(gè)等次,用分層抽樣的方法從中抽取一個(gè)容量為5的樣本,計(jì)算:從該樣本中任意抽取2名學(xué)生,至少有一名學(xué)生成績(jī)屬于及格等次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知圓M:${x^2}+{y^2}-2\sqrt{3}x=0$的圓心是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的右焦點(diǎn),過(guò)橢圓的左焦點(diǎn)和上頂點(diǎn)的直線與圓M相切.
(I)求橢圓C的方程;
(Ⅱ)橢圓C上有兩點(diǎn)A(x1,y1)、B(x2,y2),OA、OB斜率之積為$-\frac{1}{4}$,求$x_1^2+x_2^2$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某校組織由5名學(xué)生參加的演講比賽,采用抽簽法決定演講順序,在“學(xué)生A和B都不是第一個(gè)出場(chǎng),B不是最后一個(gè)出場(chǎng)”的前提下,學(xué)生C第一個(gè)出場(chǎng)的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{1}{9}$D.$\frac{3}{20}$

查看答案和解析>>

同步練習(xí)冊(cè)答案