【題目】已知實(shí)數(shù),函數(shù).

1)當(dāng)時(shí),求的最小值;

2)當(dāng)時(shí),判斷的單調(diào)性,并說(shuō)明理由;

3)求實(shí)數(shù)的范圍,使得對(duì)于區(qū)間上的任意三個(gè)實(shí)數(shù),都存在以為邊長(zhǎng)的三角形.

【答案】12;(2)遞增;(3).

【解析】

試題(1)研究函數(shù)問(wèn)題,一般先研究函數(shù)的性質(zhì),如奇偶性,單調(diào)性,周期性等等,如本題中函數(shù)是偶函數(shù),因此其最小值我們只要在時(shí)求得即可;(2時(shí),可化簡(jiǎn)為,下面我們只要按照單調(diào)性的定義就可證明在上函數(shù)是單調(diào)遞增的,當(dāng)然在上是遞減的;(3)處理此問(wèn)題,首先通過(guò)換元法把問(wèn)題簡(jiǎn)化,設(shè),則函數(shù)變?yōu)?/span>,問(wèn)題變?yōu)榍髮?shí)數(shù)的范圍,使得在區(qū)間上,恒有.對(duì)于函數(shù),我們知道,它在上遞減,在上遞增,故我們要討論它在區(qū)間上的最大(小)值,就必須分類(lèi)討論,分類(lèi)標(biāo)準(zhǔn)顯然是,,在時(shí)還要討論最大值在區(qū)間的哪個(gè)端點(diǎn)取得,也即共分成四類(lèi).

試題解析:易知的定義域?yàn)?/span>,且為偶函數(shù).

1時(shí),

時(shí)最小值為2.

2時(shí),

時(shí),遞增;時(shí),遞減;

為偶函數(shù).所以只對(duì)時(shí),說(shuō)明遞增.

設(shè),所以,得

所以時(shí),遞增;

3,,

從而原問(wèn)題等價(jià)于求實(shí)數(shù)的范圍,使得在區(qū)間上,

恒有.

當(dāng)時(shí),上單調(diào)遞增,

從而;

當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增,

,從而;

當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增,

,

,從而;

當(dāng)時(shí),上單調(diào)遞減,

,從而;

綜上,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)為二次函數(shù),且f(x-1)+f(x)=2x2+4.

(1)求f(x)的解析式;

(2)當(dāng)x∈[t,t+2],t∈R時(shí),求函數(shù)f(x)的最小值(用t表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)市場(chǎng)調(diào)查,超市中的某種小商品在過(guò)去的近40天的日銷(xiāo)售量(單位:件)與價(jià)格(單位:元)為時(shí)間(單位:天)的函數(shù),且日銷(xiāo)售量近似滿足,價(jià)格近似滿足

(1)寫(xiě)出該商品的日銷(xiāo)售額(單位:元)與時(shí)間)的函數(shù)解析式并用分段函數(shù)形式表示該解析式(日銷(xiāo)售額=銷(xiāo)售量商品價(jià)格);

(2)求該種商品的日銷(xiāo)售額的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為打入國(guó)際市場(chǎng),決定從、兩種產(chǎn)品中選擇一種進(jìn)行投資生產(chǎn),已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬(wàn)美元)

年固定成本

每件產(chǎn)品成本

每件產(chǎn)品銷(xiāo)售價(jià)

每年最多可生產(chǎn)的件數(shù)

A產(chǎn)品

20

10

200

B產(chǎn)品

40

8

18

120

其中年固定成本與年生產(chǎn)的件數(shù)無(wú)關(guān),是待定常數(shù),其值由生產(chǎn)產(chǎn)品的原材料決定,預(yù)計(jì),另外,年銷(xiāo)售B產(chǎn)品時(shí)需上交萬(wàn)美元的特別關(guān)稅,假設(shè)生產(chǎn)出來(lái)的產(chǎn)品都能在當(dāng)年銷(xiāo)售出去.

(1)求該廠分別投資生產(chǎn)A、兩種產(chǎn)品的年利潤(rùn)與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并求出其定義域;

(2)如何投資才可獲得最大年利潤(rùn)?請(qǐng)?jiān)O(shè)計(jì)相關(guān)方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓M:: (a>0)的一個(gè)焦點(diǎn)為F(﹣1,0),左右頂點(diǎn)分別為A,B.經(jīng)過(guò)點(diǎn)F的直線l與橢圓M交于C,D兩點(diǎn).
(1)求橢圓方程;
(2)當(dāng)直線l的傾斜角為45°時(shí),求線段CD的長(zhǎng);
(3)記△ABD與△ABC的面積分別為S1和S2 , 求|S1﹣S2|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了解高一年級(jí)學(xué)生身高發(fā)育情況,對(duì)全校名高一年級(jí)學(xué)生按性別進(jìn)行分層抽樣檢查,測(cè)得身高(單位:)頻數(shù)分布表如表、表.

:男生身高頻數(shù)分布表

身高/

頻數(shù)

:女生身高頻數(shù)分布表

身高/

頻數(shù)

(1)求該校高一女生的人數(shù);

(2)估計(jì)該校學(xué)生身高在的概率;

(3)以樣本頻率為概率,現(xiàn)從高一年級(jí)的男生和女生中分別選出人,設(shè)表示身高在學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為2,則輸入的正整數(shù)a的可能取值的集合是(

A.{1,2,3,4,5}
B.{1,2,3,4,5,6}
C.{2,3,4,5}
D.{2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知傾斜角為的直線經(jīng)過(guò)點(diǎn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)寫(xiě)出曲線的普通方程;

(2)若直線與曲線有兩個(gè)不同的交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù)是自然對(duì)數(shù)的底數(shù)).

(1)若有最小值,求的取值范圍,并求出的最小值;

(2)若對(duì)任意實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案