10.若(x+$\frac{1}{x}$+1)n的展開(kāi)式中各項(xiàng)的系數(shù)之和為81,則分別在區(qū)間[0,π]和[0,$\frac{n}{4}$]內(nèi)任取兩個(gè)實(shí)數(shù)x,y,滿(mǎn)足y>sinx的概率為(  )
A.1-$\frac{1}{π}$B.1-$\frac{2}{π}$C.1-$\frac{3}{π}$D.$\frac{1}{2}$

分析 根據(jù)幾何概型的概率公式,求出對(duì)應(yīng)事件對(duì)應(yīng)的平面區(qū)域的面積,進(jìn)行求解即可

解答 解:由題意知,令x=1,得到3n=81,解得 n=4,∴0≤x≤π,0≤y≤1.
作出對(duì)應(yīng)的圖象如圖所示:
則此時(shí)對(duì)應(yīng)的面積S=π×1=π,
滿(mǎn)足y≥sinx的點(diǎn)構(gòu)成區(qū)域的面積為:
S=${∫}_{0}^{π}$sinxdx=-cosx|${\;}_{0}^{π}$=-cosπ+cos0=2,
則滿(mǎn)足y>sinx的概率為$P=1-\frac{2}{π}$.

點(diǎn)評(píng) 本題主要考查幾何概型的概率的計(jì)算,根據(jù)積分以及線性規(guī)劃的知識(shí)作出對(duì)應(yīng)的圖象,求出對(duì)應(yīng)的面積是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=cos2ωx-$\frac{1}{2}$,若函數(shù)f(x)最小正周期為π,則正數(shù)ω的值是( 。
A.1B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿(mǎn)足“當(dāng)f(k)≤k2成立時(shí),總可推出f(k+1)≤(k+1)2”成立”.那么,下列命題總成立的是( 。
A.若f(2)≤4成立,則當(dāng)k≥1時(shí),均有f(k)≤k2成立
B.若f(4)≤16成立,則當(dāng)k≤4時(shí),均有f(k)≤k2成立
C.若f(6)>36成立,則當(dāng)k≥7時(shí),均有f(k)>k2成立
D.若f(7)=50成立,則當(dāng)k≤7時(shí),均有f(k)>k2成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某車(chē)間將10名技工平均分為甲,乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工零件若干,其中合格零件的個(gè)數(shù)如表:
每組員工編號(hào)12345
甲組a579b
乙組56789
已知甲組技工在單位時(shí)間內(nèi)完成合格零件的平均數(shù)與方差分別為7與5.2,且a<b
(1)求a,b的值,并直接指出哪一組技工的技術(shù)水平的穩(wěn)定性更好;
(2)質(zhì)檢部門(mén)從該車(chē)間甲,乙兩組中各隨機(jī)抽取1名技工,對(duì)其加工的零件進(jìn)行檢測(cè),若兩人完成合格零件個(gè)數(shù)之和超過(guò)12件,則稱(chēng)該車(chē)間“質(zhì)量合格”,求該車(chē)間“質(zhì)量合格”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.畫(huà)出滿(mǎn)足下列條件的平面,并用字母表示
(1)水平放置的平面;
(2)豎直放置的平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知復(fù)數(shù)z滿(mǎn)足i=z(1-i),其中i為虛數(shù)單位,則復(fù)數(shù)$\overline z$所對(duì)應(yīng)的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左頂點(diǎn)為A,左焦點(diǎn)為F1(-2,0),點(diǎn)B(2,$\sqrt{2}}$)在橢圓C上,則橢圓C的方程為$\frac{x^2}{8}+\frac{y^2}{4}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知變量x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x+y≤1}\\{x-y≥1}\\{y≥-2}\end{array}\right.$,則x2+y2的最大值為13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(理)試卷(解析版) 題型:解答題

已知

(1)的什么條件?

(2)若的必要非充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案