已知函數(shù),在點處的切線方程是(e為自然對數(shù)的底)。

(1)求實數(shù)的值及的解析式;

(2)若是正數(shù),設,求的最小值;

(3)若關(guān)于x的不等式對一切恒成立,求實數(shù)的取值范圍.

 

【答案】

(1)依題意有;

故實數(shù)                            ……………4分

(2)

的定義域為;……………5分

              ……………6分

……………8分

增函數(shù)減函數(shù)

……………10分

(3)

由(2)知

…………12分

對一切恒成立

…………14分

故實數(shù)的取值范圍.

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax
x2+b
在x=1處取得極值2.
(1)求函數(shù)f(x)的表達式;
(2)當m滿足什么條件時,函數(shù)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增?
(3)若P(x0,y0)為f(x)=
ax
x2+b
圖象上任意一點,直線l與f(x)=
ax
x2+b
的圖象切于點P,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax
x2+b
,在x=1處取得極值2.
(1)求函數(shù)f(x)的解析式
(2)m滿足什么條件時,區(qū)間(m,2m+1)為函數(shù)f(x)的單調(diào)增區(qū)間;
(3)若P(x0,y0)為f(x)=
ax
x2+b
圖象上任意一點,直線/與.f(x)的圖象切于P點,不妨設直線l的斜率為對于任意的x0∈R和對于任意的t∈[4,5],均有k≥c(t2-2t-3)恒成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
axx2+b
在x=1處取極值2.
(1)求函數(shù)f(x)的解析式;
(2)當m滿足什么條件時,f(x)在區(qū)間(m,2m+1)為增函數(shù);
(3)若P(x0,y0)是函數(shù)f(x)圖象上一個動點,直線l與函數(shù)f(x)圖象切于P點,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

已知函數(shù)=,在處取得極值2。

(1)求函數(shù)的解析式;

(2)滿足什么條件時,區(qū)間為函數(shù)的單調(diào)增區(qū)間?

(3)若=圖象上的任意一點,直線=的圖象切于點,求直線的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省高三第七次月考文科數(shù)學 題型:解答題

(本小題滿分14分)

已知函數(shù)).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)記函數(shù)的圖象為曲線.設點,是曲線上的不同兩點.

如果在曲線上存在點,使得:①;②曲線在點處的切線平行

于直線,則稱函數(shù)存在“中值相依切線”.試問:函數(shù)是否存在“中值相依切

線”,請說明理由.

 

 

查看答案和解析>>

同步練習冊答案