【題目】已知為雙曲線的一個(gè)焦點(diǎn),過的一條漸近線的垂線,垂足為點(diǎn)的另一條漸近線交于點(diǎn),若,則的離心率為(

A.2B.C.D.

【答案】C

【解析】

根據(jù)列方程,求得,由此求得,進(jìn)而求得橢圓的離心率.

依題意,雙曲線的漸近線方程為.不妨設(shè)過的一條漸近線的垂線,垂足為點(diǎn),的另一條漸近線交于點(diǎn),如下圖所示.

點(diǎn)到漸近線的距離為.所以.由于

所以.設(shè),則,

,即,解得(負(fù)根舍去),

,所以.C選項(xiàng)正確.

依題意,雙曲線的漸近線方程為.不妨設(shè)過的一條漸近線的垂線,垂足為點(diǎn),的另一條漸近線交于點(diǎn),如下圖所示.

點(diǎn)到漸近線的距離為.所以.

由于,所以.所以.

根據(jù)雙曲線漸近線的對(duì)稱性可知:,所以,

此時(shí),即不符合題意.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)若與平行的直線與曲線交于,兩點(diǎn).且在軸的截距為整數(shù),的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2021年起,我省將實(shí)行“3+1+2”高考模式,某中學(xué)為了解本校學(xué)生的選考情況,隨機(jī)調(diào)查了100位學(xué)生,其中選考化學(xué)或生物的學(xué)生共有70位,選考化學(xué)的學(xué)生共有40位,選考化學(xué)且選考生物的學(xué)生共有20位.若該校共有1500位學(xué)生,則該校選考生物的學(xué)生人數(shù)的估計(jì)值為(

A.300B.450C.600D.750

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了更好地支持中小型企業(yè)的發(fā)展,某市決定對(duì)部分企業(yè)的稅收進(jìn)行適當(dāng)?shù)臏p免,某機(jī)構(gòu)調(diào)查了當(dāng)?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖,下面三個(gè)結(jié)論:

樣本數(shù)據(jù)落在區(qū)間的頻率為0.45

如果規(guī)定年收入在500萬(wàn)元以內(nèi)的企業(yè)才能享受減免稅政策,估計(jì)有55%的當(dāng)?shù)刂行⌒推髽I(yè)能享受到減免稅政策;

樣本的中位數(shù)為480萬(wàn)元.

其中正確結(jié)論的個(gè)數(shù)為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí),圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色其面積稱為朱實(shí),黃實(shí),利朱用2×勾×股+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+股2=弦2,設(shè)勾股中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲1000顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A.886B.500C.300D.134

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對(duì)二人進(jìn)行了測(cè)驗(yàn),根據(jù)測(cè)驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(

A.甲的數(shù)據(jù)分析素養(yǎng)高于乙

B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)

C.乙的六大素養(yǎng)中邏輯推理最差

D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓T.上的兩點(diǎn),且A點(diǎn)位于第一象限.Ax軸的垂線,垂足為點(diǎn)C,點(diǎn)D滿足,延長(zhǎng)T于點(diǎn).

1)設(shè)直線,的斜率分別為,.

i)求證:;

ii)證明:是直角三角形;

2)求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人,為了解學(xué)生本學(xué)期課外閱讀時(shí)間,現(xiàn)采用分成抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們課外閱讀時(shí)間,然后按初中學(xué)生高中學(xué)生分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:小時(shí))分為5組:[0,10),[10,20),[20,30),[30,40),[40,50],并分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

1)寫出的值;試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù);
2)從閱讀時(shí)間不足10個(gè)小時(shí)的樣本學(xué)生中隨機(jī)抽取3人,并用表示其中初中生的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三年級(jí)有男生人,學(xué)號(hào)為,,;女生人,學(xué)號(hào)為,,.對(duì)高三學(xué)生進(jìn)行問卷調(diào)查,按學(xué)號(hào)采用系統(tǒng)抽樣的方法,從這名學(xué)生中抽取人進(jìn)行問卷調(diào)查(第一組采用簡(jiǎn)單隨機(jī)抽樣,抽到的號(hào)碼為);再?gòu)倪@名學(xué)生中隨機(jī)抽取人進(jìn)行數(shù)據(jù)分析,則這人中既有男生又有女生的概率是( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案