已知實(shí)數(shù)x、y滿足
x+y-1≤0
x-y+1≥0
y≥-1
,則z=
9y-18
x-2
+
x-2
y-2
的最小值為( 。
A、
13
2
B、
37
2
C、
1
2
D、2
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專(zhuān)題:數(shù)形結(jié)合,轉(zhuǎn)化思想
分析:由約束條件作出可行域,求出t=
y-2
x-2
的范圍,再由z=
9y-18
x-2
+
x-2
y-2
=9t+
1
t
結(jié)合函數(shù)的單調(diào)性求得答案.
解答: 解:令
y-2
x-2
=t
,
由約束條件
x+y-1≤0
x-y+1≥0
y≥-1
作出可行域如圖,

由圖可知,t∈[
1
2
,+∞),
∴z=
9y-18
x-2
+
x-2
y-2
=9t+
1
t
,
∵z=9t+
1
t
在[
1
2
,+∞)上為增函數(shù),
∴當(dāng)t=
1
2
時(shí)z有最小值為
13
2

故選:A.
點(diǎn)評(píng):本題考查了簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=x2+mx+4,當(dāng)x∈R時(shí),恒有y>0,則m的取值范圍是(  )
A、(0,2)
B、(-2,2)
C、(-4.4)
D、(-2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=2,a2=7,an+2是anan+1的個(gè)位數(shù)字,Sn是{an}的前n項(xiàng)和,則S242-7a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n是空間兩條直線,α,β是空間兩個(gè)平面,有下列四個(gè)命題:
①當(dāng)m?α?xí)r,“n∥α”是“m∥n”的必要不充分條件;
②當(dāng)m?α?xí)r,“m⊥β”是“α⊥β”的充分不必要條件;
③當(dāng)n⊥α?xí)r,“n⊥β”是“α∥β”成立的充要條件;
④當(dāng)m?α?xí)r,“n⊥α”是“m⊥n”的充分不必要條件;
以上四個(gè)命題正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:方程x2+2x+a=0有兩個(gè)相異的實(shí)根;q:函數(shù)f(x)=2x-ax-2有兩個(gè)零點(diǎn),且p∨q為真,p∧q為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,若Sn=3an+2n.
(1)求證:數(shù)列{an-2}是等比數(shù)列. 
(2)若bn=n×(an-2),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若以曲線y=x3+bx2+4x+c(c為常數(shù))上任意一點(diǎn)為切點(diǎn)的切線的斜率恒為非負(fù)數(shù),則實(shí)數(shù)b的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞增;命題q:不等式ax2-ax+1>0對(duì)?x∈R恒成立,若p且q為假,p或q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

全集U={1,2,314,5,6),M={2,3,4),N={4,5},則∁U(M∪N)等于( 。
A、{1,3,5}
B、{1,5}
C、{l,6}
D、{2,4,6}

查看答案和解析>>

同步練習(xí)冊(cè)答案