已知點P在直線x+2y-1=0上,點Q在直線x+2y+3=0上,PQ的中點為M(x0,y0),且y0>x0+2,則
y0
x0
的取值范圍是(  )
A、(-
1
2
,-
1
5
)
B、(-
1
2
,-
1
5
]
C、[-
1
2
,-
1
5
]
D、[-
1
2
,-
1
5
)
分析:設(shè)出P點坐標及
y0
x0
=k,由M為PQ中點根據(jù)中點坐標公式表示出Q的坐標,然后把P和Q分別代入到相應(yīng)的直線方程中聯(lián)立可得M的橫坐標,因為y0>x0+2,把解出的M橫坐標代入即可得到關(guān)于k的不等式,求出解集即可.
解答:解:設(shè)P(x1,y1),
y0
x0
=k,則y0=kx0,∵PQ中點為M(x0,y0),∴Q(2x0-x1,2y0-y1
∵P,Q分別在直線x+2y-1=0和x+2y+3=0上,
∴x1+2y1-1=0,2x0-x1+2(2y0-y1)+3=0,
∴2x0+4y0+2=0即x0+2y0+1=0,
∵y0=kx0,
∴x0+2kx0+1=0即x0=-
1
1+2k

又∵y0>x0+2,代入得kx0>x0+2即(k-1)x0>2即(k-1)(-
1
1+2k
)>2即
5k+1
2k+1
<0
∴-
1
2
<k<-
1
5

故選A
點評:此題為一道中檔題,要求學(xué)生會利用解析法求出中點坐標,會根據(jù)條件列出不等式求解集.學(xué)生做題時注意靈活變換不等式y(tǒng)0>x0+2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1.(a>b>0)
,其中短軸長和焦距相等,且過點M(2,
2
)

(1)求橢圓的標準方程;
(2)若P(x0,y0)在橢圓C的外部,過P做橢圓的兩條切線PM、PN,其中M、N為切點,則MN的方程為
x0x
a2
+
y0y
b2
=1
.已知點P在直線x+y-4=0上,試求橢圓右焦點F到直線MN的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

已知點P在直線x=2上移動,直線l過原點,并且與射線OP垂直,通過點A(1,0)及點P的直線m和直線l交于點Q,求點Q的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知點P在直線x=2上移動,直線l過原點,并且與射線OP垂直,通過點A(1,0)及點P的直線m和直線l交于點Q,求點Q的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P在直線x=2上移動,直線l通過原點且與OP垂直,通過定點A(1,0)及點P的直線m和直線l 交于點Q,求點Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案