4.已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E為AA1中點(diǎn),則異面直線BE與CD1所形成角的余弦值為( 。
A.$\frac{\sqrt{10}}{10}$B.$\frac{1}{5}$C.$\frac{3\sqrt{10}}{10}$D.$\frac{3}{5}$

分析 由BA1∥CD1,知∠A1BE是異面直線BE與CD1所形成角,由此能求出異面直線BE與CD1所形成角的余弦值.

解答 解:∵正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E為AA1中點(diǎn),
∴BA1∥CD1,∴∠A1BE是異面直線BE與CD1所形成角,
設(shè)AA1=2AB=2,
則A1E=1,BE=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
A1B=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,
∴cos∠A1BE=$\frac{{A}_{1}{B}^{2}+B{E}^{2}-{A}_{1}{E}^{2}}{2•{A}_{1}B•{B}_{\;}E}$
=$\frac{5+2-1}{2×\sqrt{5}×\sqrt{2}}$
=$\frac{3\sqrt{10}}{10}$.
∴異面直線BE與CD1所形成角的余弦值為$\frac{3\sqrt{10}}{10}$.
故選:C.

點(diǎn)評(píng) 本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四棱錐P-ABCD的底面ABCD是正方形,PA⊥平面ABCD,PA=AB=2.
(1)若E,F(xiàn)分別是PC,AD的中點(diǎn),證明:EF∥平面PAB;
(2)若E是PC的中點(diǎn),F(xiàn)是AD上的動(dòng)點(diǎn),問AF為何值時(shí),EF⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=log4(4x+1)+kx與g(x)=log4(a•2x-$\frac{4}{3}$a),其中f(x)是偶函數(shù).
(Ⅰ) 求實(shí)數(shù)k的值;
(Ⅱ) 求函數(shù)g(x)的定義域;
(Ⅲ) 若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)為F(1,0),直線l與拋物線C相交于A,B兩點(diǎn),且線段AB的中點(diǎn)為M(2,2).
(1)求拋物線的C的方程;
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過點(diǎn)(-1,3)且與直線2x+y+3=0垂直的直線方程為( 。
A.x-2y+7=0B.2x-y+5=0C.x-2y-5=0D.2x+y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對(duì)于任意實(shí)數(shù)a、b、c、d,下列命題中,
①若a>b,c>d,則a-c>b-d;
②若a>b>0,c>d>0,則ac>bd;
③若a>b>0,則$\root{3}{a}$>$\root{3}$
④若a>b>0,則$\frac{1}{{a}^{2}}$<$\frac{1}{^{2}}$
真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}3{x^2}-4,x>0\\ x+2,x=0\\-1,x<0\end{array}$,則$f(f(\frac{1}{2}))$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x2+1)=$\frac{x}{{2{x^2}+3}}$(x>0),則f(x)=( 。
A.$\frac{{\sqrt{x-1}}}{2x+1}$B.$-\frac{{\sqrt{x-1}}}{2x+1}$C.$\frac{{\sqrt{x}}}{2x+3}$D.$-\frac{{\sqrt{x}}}{2x+3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=-x3+2ex2-x2+mx-e2(x>0),若f(x)=0有兩個(gè)相異實(shí)根,則實(shí)數(shù)m的取值范圍是( 。
A.(-e2+2e,0)B.(-e2+2e,+∞)C.(0,e2-2e)D.(-∞,-e2+2e)

第Ⅱ卷

查看答案和解析>>

同步練習(xí)冊(cè)答案