用長為18 m的鋼條圍成一個長方體容器的框架,如果所制的容器的長與寬之比為2∶1,那么高為多少時容器的容積最大?并求出它的最大容積.
容器高為1.5 m時容器的容積最大,最大容積為3.
解析試題分析:設長方體的寬為m, 長為2x m,高為 m,由實際意義得出,長方體體積可寫出容積,對求導,知0<x<1時,V′(x)>0;當時,V′(x)<0,則在時有最大值,求之得最大容積.
解:設長方體的寬為x m,則長為2x m,高為 m,
由 解得 , 3分
故長方體的容積為 6分
從而 V′(x)=,
令V′(x)=0,解得x=1或x=0 (舍去), 8分
當0<x<1時,V′(x)>0;
當時,V′(x)<0,
故在x=1處V(x)取得極大值,并且這個極大值就是V(x)的最大值,
從而最大體積為V(1)=9×12-6×13 = 3 , 10分
此時容器的高為4.5-3=1.5 m,
因此,容器高為1.5 m時容器的容積最大,最大容積為3 . 12分
考點:利用導數(shù)求函數(shù)的最值,函數(shù)的應用.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
設函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)).
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在內(nèi)存在兩個極值點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知二次函數(shù)的圖像過點和,直線,直線(其中,為常數(shù));若直線與函數(shù)的圖像以及直線與函數(shù)以及的圖像所圍成的封閉圖形如陰影所示.
(1)求;
(2)求陰影面積關于的函數(shù)的解析式;
(3)若過點可作曲線的三條切線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)(R),為其導函數(shù),且時有極小值.
(1)求的單調(diào)遞減區(qū)間;
(2)若,,當時,對于任意x,和的值至少有一個是正數(shù),求實數(shù)m的取值范圍;
(3)若不等式(為正整數(shù))對任意正實數(shù)恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)當時,求函數(shù)單調(diào)區(qū)間;
(2)若函數(shù)在區(qū)間[1,2]上的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ex+2x2—3x
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2) 當x ≥1時,若關于x的不等式f(x)≥ax恒成立,求實數(shù)a的取值范圍;
(3)求證函數(shù)f(x)在區(qū)間[0,1)上存在唯一的極值點,并用二分法求函數(shù)取得極值時相應x的近似值(誤差不超過0.2);(參考數(shù)據(jù)e≈2.7,≈1.6,e0.3≈1.3)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com