16.已知a=cos17°cos23°-sin17°sin23°,b=2cos225°-1,c=$\frac{{\sqrt{3}}}{2}$,則a,b,c的大小關(guān)系( 。
A.b>a>cB.c>b>aC.c>a>bD.a>c>b

分析 利用兩角差的余弦函數(shù)公式,二倍角的余弦函數(shù)公式,特殊角的三角函數(shù)值及余弦函數(shù)的單調(diào)性即可得解.

解答 解:∵a=cos17°cos23°-sin17°sin23°=cos(17°+23°)=cos40°,
b=2cos225°-1=cos50°.
c=$\frac{{\sqrt{3}}}{2}$=cos30°,
由于cosx在(0°,90°)單調(diào)遞減,可得cos30°>cos40°>cos50°.
∴b<a<c.
故選:C.

點評 本題主要考查了兩角差的余弦函數(shù)公式,二倍角的余弦函數(shù)公式,特殊角的三角函數(shù)值及余弦函數(shù)的單調(diào)性的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=(x2+$\frac{3}{2}$)(x+a)(a∈R).
(Ⅰ)若函數(shù)f(x)的圖象上有與x軸平行的切線,求a的范圍;
(Ⅱ)若f′(-1)=0.證明:對任意的x1,x2∈,不等式|f(x1)-f(x2)|≤$\frac{5}{16}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知角α的終邊經(jīng)過點(-4,-3),那么tanα等于(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線x+2ay-1=0與直線x-4y=0平行,則a的值為( 。
A.-2B.2C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.給出下列命題:①零向量沒有方向;②若兩個空間向量相等,則它們的起點相同,終點也相同;③若空間向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$;④若空間向量$\overrightarrow{m}$,$\overrightarrow{n}$,$\overrightarrow{p}$滿足$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,則$\overrightarrow{m}$=$\overrightarrow{p}$;⑤空間中任意兩個單位向量必相等.其中正確命題的個數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an} 中,a5=3,a6=-2
(1)求數(shù)列{an}的首項a1和公差d;
(2)求數(shù)列{an}的通項公式an 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=a|log2x|+1(a≠0),定義函數(shù)F(x)=$\left\{\begin{array}{l}{f(x),x>0}\\{f(-x),x<0}\end{array}\right.$,給出下列命題:
①F(x)=|f(x);   
②函數(shù)F(x)是偶函數(shù);
③當a<0時,若0<m<n<1,則有F(m)-F(n)<0成立;
④當a>0時,函數(shù)y=F(x)-2有4個零點.
其中正確命題的序號為②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在三棱錐P-ABC中,底面ABC是邊長為6的正三角形,PA⊥底面ABC,且PB與底面ABC所成的角為$\frac{π}{6}$.
(1)求三棱錐P-ABC的體積;
(2)若M是BC的中點,求異面直線PM與AB所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$|{\vec a}|=1$,$|{\vec b}|=2$,$\vec a(\vec a-\vec b)=3$則$\vec a$與$\vec b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.π

查看答案和解析>>

同步練習(xí)冊答案