已知集合M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},則集合M與N之間的關(guān)系是
 
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:首先,化簡(jiǎn)集合M,就是求解函數(shù)y=x2-2x-1,x∈R的值域,然后,利用集合之間的基本關(guān)系進(jìn)行判斷即可.
解答: 解:由集合M得y=x2-2x-1=(x-1)2-2,x∈R
∴y≥-2,
∴M={y|y≥-2},
∵N={x|-2≤x≤4},
∴N⊆M,
故答案為:N⊆M.
點(diǎn)評(píng):本題重點(diǎn)考查集合之間的基本關(guān)系,屬于基礎(chǔ)題,注意落實(shí)集合M的元素取值情形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,2)在橢圓
x2
16
+
y2
12
=1內(nèi),點(diǎn)F的坐標(biāo)為(2,0),P為橢圓上一點(diǎn),試求當(dāng)|PA|+2|PF|取得最小值時(shí)P點(diǎn)的坐標(biāo),并求出|PA|+2|PF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
2sin50°+sin80°(1+
3
tan10°)
cos5°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
x2
2
-kx,其中常數(shù)k∈R.
(1)求f(x)的單調(diào)增區(qū)間與單調(diào)減區(qū)間;
(2)若f(x)存在極值且有唯一零點(diǎn)x0,求k的取值范圍及不超過
x0
k
的最大整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x、y滿足x2+y2-2x+4y=0,則x-3y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
1
x
<1,x∈R},集合B是函數(shù)y=lg(x+1)的定義域,則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S9=S4+20,則S13的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:cosπ+3sin
π
2
-4cos(-
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的函數(shù)且滿足f(x)>-xf′(x),則關(guān)于x的不等式f(x-1)>(x+1)f(x2-1)的解集為(  )
A、(-∞,1)
B、(-1,1)
C、(-∞,0)
D、(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案