【題目】為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),某地政府扶持興建了一批“超級(jí)蔬菜大棚”,為了解大棚的面積與年利潤之間的關(guān)系,隨機(jī)抽取了其中的7個(gè)大棚,并對(duì)當(dāng)年的利潤進(jìn)行統(tǒng)計(jì)整理后得到了如下數(shù)據(jù)對(duì)比表:
由所給數(shù)據(jù)的散點(diǎn)圖可以看出,各樣本點(diǎn)都分布在一條直線附近,并且與有很強(qiáng)的線性相關(guān)關(guān)系.
(1)求關(guān)于的線性回歸方程;(結(jié)果保留三位小數(shù));
(2)小明家的“超級(jí)蔬菜大棚”面積為8.0畝,估計(jì)小明家的大棚當(dāng)年的利潤為多少;
(3)另外調(diào)查了近5年的不同蔬菜畝平均利潤(單位:萬元),其中無絲豆為:1.5,1.7,2.1,2.2,2.5;彩椒為:1.8,1.9,1.9,2.2,2.2,請分析種植哪種蔬菜比較好?
參考數(shù)據(jù):,.
參考公式:,.
【答案】(1).
(2)11.442萬元.
(3)種植彩椒比較好.
【解析】分析:(1)先求均值,再代公式求,根據(jù)求,(2)即求自變量為8.0時(shí)對(duì)應(yīng)函數(shù)值,(3)分別求平均利潤(一樣),再分別求方差,根據(jù)方差越小越穩(wěn)定,進(jìn)行選擇.
詳解: (1),,.
,
,
那么回歸方程為:.
(2)將代入方程得,即小明家的“超級(jí)大棚”當(dāng)年的利潤大約為11.442萬元.
(3)近5年來,無絲豆畝平均利潤的平均數(shù)為,
方差.
彩椒畝平均利潤的平均數(shù)為.
方差為.
因?yàn)?/span>,,∴種植彩椒比較好.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)圓M與定圓C:x2+y2+4x=0相外切,且與直線l:x-2=0相切,則動(dòng)圓M的圓心的軌跡方程為( )
A. y2-12x+12=0 B. y2+12x-12=0
C. y2+8x=0 D. y2-8x=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),以O為圓心的圓與直線相切.
(1)求圓O的方程.
(2)直線與圓O交于A,B兩點(diǎn),在圓O上是否存在一點(diǎn)M,使得四邊形為菱形?若存在,求出此時(shí)直線l的斜率;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ln(x+m)
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間中有如下命題,其中正確的是( )
A. 若直線a和b共面,直線b和c共面,則直線a和c共面;
B. 若平面α內(nèi)的任意直線m∥平面β,則平面α∥平面β;
C. 若直線a與平面不垂直,則直線a與平面內(nèi)的所有直線都不垂直;
D. 若點(diǎn)P到三角形三條邊的距離相等,則點(diǎn)P在該三角形所在平面內(nèi)的射影是該三角形的內(nèi)心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且經(jīng)過點(diǎn).
(1)求橢圓方程;
(2)過點(diǎn)的直線與橢圓交于兩個(gè)不同的點(diǎn),求線段的垂直平分線在軸截距的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點(diǎn).
(1)求直線l的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD都是等邊三角形.
(1)證明:PB⊥CD;
(2)求二面角A﹣PD﹣C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)如圖,在四棱錐P—ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.
(1)求點(diǎn)D到平面PBC的距離;
(2)設(shè)Q是線段BP上的動(dòng)點(diǎn),當(dāng)直線CQ與DP所成的角最小時(shí),求二面角B-CQ-D的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com