已知拋物線y=x2+2x+b(x∈R)與坐標(biāo)軸有三個交點(diǎn),經(jīng)過這三點(diǎn)的圓記為M.
(1)求實(shí)數(shù)b的取值范圍;
(2)設(shè)拋物線與x軸的交點(diǎn)從左到右分別為A、B,與y軸的交點(diǎn)為C,求A、B、C三點(diǎn)的坐標(biāo);
(3)設(shè)直線l是拋物線在點(diǎn)A處的切線,試判斷直線l是否也是圓M的切線?并說明理由.
【答案】分析:(1)先對實(shí)數(shù)b分等0和不等0兩種情況討論,再把與坐標(biāo)軸有三個交點(diǎn),轉(zhuǎn)化為與x軸有兩個不同的交點(diǎn)問題,利用判別式大于0即可求出實(shí)數(shù)b的取值范圍;
(2)先讓x=0求出點(diǎn)C的坐標(biāo),再令y=0求出對應(yīng)方程的根即可求出點(diǎn)A、B的坐標(biāo);
(3)先求出圓M的方程以及直線l是的斜率,利用相切對應(yīng)的斜率相乘為-1,解出實(shí)數(shù)b再與第一問相結(jié)合即可得出結(jié)論.
解答:解:(1)∵拋物線與坐標(biāo)軸有三個交點(diǎn)
∴b≠0,否則拋物線與坐標(biāo)軸只有兩個交點(diǎn),與題設(shè)不符,
由b≠0知,拋物線與y軸有一個非原點(diǎn)的交點(diǎn)(0,b),
故拋物線與x軸有兩個不同的交點(diǎn),即方程x2+2x+b=0有兩個不同的實(shí)根
∴△=4-4b>0即b<1
∴b的取值范圍是b<0或0<b<(13分)
(2)令x=0得y=b,
∴C(0,b)(4分)
令y=0得x2+2x+b=0解得
,(6分)
(3)∵y=x2+2x+b
∴y'=2x+2
∴直線l的斜率(7分)
設(shè)圓M的方程為x2+y2+Dx+Ey+F=0
∵圓M過,,C(0,b)

解得(10分)
∴圓心(11分)
,若直線l也是圓M的切線,
則kl•kMA=-1即⇒1+b=1解得b=0
這與b<0或0<b<1矛盾(13分)
∴直線l不可能是圓M的切線.(14分)
點(diǎn)評:當(dāng)一個拋物線開口向上或向下時,與坐標(biāo)軸的交點(diǎn)問題就轉(zhuǎn)化為對應(yīng)函數(shù)與坐標(biāo)軸的交點(diǎn)問題.而一個函數(shù)與y軸最多有一個交點(diǎn),就把問題簡單化了.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=-x2+3上存在關(guān)于直線x+y=0對稱的相異兩點(diǎn)A、B,則|AB|等于( 。
A、3
B、4
C、3
2
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=-x2+ax+
12
與直線y=2x
(1)求證:拋物線與直線相交;
(2)求當(dāng)拋物線的頂點(diǎn)在直線的下方時,a的取值范圍;
(3)當(dāng)a在(2)的取值范圍內(nèi)時,求拋物線截直線所得弦長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+bx+c在其上一點(diǎn)(1,2)處的切線與直線y=x-2平行,則b、c的值分別為
-1、2
-1、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+4ax-4a+3,y=x2+2ax-2a至少有一條與x軸相交,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2上有一定點(diǎn)A(-1,1)和兩動點(diǎn)P、Q,當(dāng)PA⊥PQ時,點(diǎn)Q的橫坐標(biāo)取值范圍是(  )
A、(-∞,-3]B、[1,+∞)C、[-3,1]D、(-∞,-3]∪[1,+∞)

查看答案和解析>>

同步練習(xí)冊答案