如圖,在底面為平行四邊形的四棱錐中,,
平面,且,點(diǎn)的中點(diǎn).

(1)求證:;
(2)求證:平面;
(3)求二面角的大小.

(1)見(jiàn)解析(2)見(jiàn)解析(3)135°

解析試題分析:(1)利用三垂線定理可證;(2)直線與平面平行的判定定理(Ⅲ)證,進(jìn)而找出二面角的平面角
試題解析:(1)AB是PB在平面ABCD上的射影,
ABAC,AC平面ABCD, ACPB.
(2)連接BD,與AC相交與O,連接EO,
ABCD是平行四邊形O是BD的中點(diǎn)又E是PD的中點(diǎn), EOPB.又PB平面AEC,EO平面AEC,
PB平面AEC,
(3)如圖,取AD的中點(diǎn)F,連EF,F(xiàn)O,則

EF是△PAD的中位線,EFPA又平面,
同理FO是△ADC的中位線,FOABFO^AC,由三垂線定理可知ÐEOF是二面角E-AC-D的平面角.又FO=AB=PA=EF。
ÐEOF=45°而二面角與二面角E-AC-D互補(bǔ),
故所求二面角的大小為135°.
考點(diǎn):利用三垂線定理可證;直線與平面平行的判定定理;出二面角的平面角

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在正方體中,,的中點(diǎn),的中點(diǎn).
(1)求證:平面平面
(2)求證:平面;
(3)設(shè)為正方體棱上一點(diǎn),給出滿足條件的點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,長(zhǎng)方體中,,G是上的動(dòng)點(diǎn)。

(l)求證:平面ADG;
(2)判斷與平面ADG的位置關(guān)系,并給出證明;
(3)若G是的中點(diǎn),求二面角G-AD-C的大;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正方體中,已知為棱上的動(dòng)點(diǎn).

(1)求證:
(2)當(dāng)為棱的中點(diǎn)時(shí),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱臺(tái)中,底面是平行四邊形,平面,,.

(1)證明:平面;
(2)證明:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知三棱錐P-ABC中,∠ACB=90°,CB=4,AB=20,D為AB中點(diǎn),M為PB中點(diǎn),且△PDB是正三角形,PA⊥PC。
.
(1)求證:DM∥平面PAC;
(2)求證:平面PAC⊥平面ABC;
(3)求三棱錐M-BCD的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面內(nèi),,AB=2BC=2,P為平面外一個(gè)動(dòng)點(diǎn),且PC=

(1)問(wèn)當(dāng)PA的長(zhǎng)為多少時(shí),
(2)當(dāng)的面積取得最大值時(shí),求直線PC與平面PAB所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐,底面是矩形,平面底面,平面,且點(diǎn)上.

(1)求證:
(2)求三棱錐的體積;
(3)設(shè)點(diǎn)在線段上,且滿足,試在線段上確定一點(diǎn),使得平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖①,E、F分別是直角三角形ABC邊AB和AC的中點(diǎn),∠B=90°,沿EF將三角形ABC折成如圖②所示的銳二面角A1EFB,若M為線段A1C的中點(diǎn).求證:

(1)直線FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案