已知向量關(guān)于y軸對稱,=(1,0),則滿足不等式的點A(x,y)的集合用陰影表示為圖中的( )
A.
B.
C.
D.
【答案】分析:先求出點A'的坐標,并用點A的坐標表示出 +,最后把原不等式轉(zhuǎn)化為(x-1)2+y2-1≤0,根據(jù)幾何意義可得結(jié)論.
解答:解:由題得:A'(-x,y),=(-2x,0).
+=x2+y2-2x=(x-1)2+y2-1.
∴不等式轉(zhuǎn)化為(x-1)2+y2-1≤0.
故滿足要求的點在以(1,0)為圓心,1為半徑的圓上以及圓的內(nèi)部.
故選B.
點評:本題主要考查了向量在幾何中的應(yīng)用,向量的基本運算以及計算能力和轉(zhuǎn)化思想的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•漳州模擬)本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩陣A;
(Ⅱ) 矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)選修4-4:坐標系與參數(shù)方程
已知直角坐標系xOy中,直線l的參數(shù)方程為
x=t-3 
y=
3
(t為參數(shù)).以直角坐標系xOy中的原點O為 極點,x軸的非負半軸為極軸,圓C的極坐標方程為ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐標方程;
(Ⅱ) P為圓C上的點,求P到l距離的取值范圍.
(3)選修4-5:不等式選講
已知關(guān)于x的不等式:|x-1|+|x+2|≥a2+2|a|-5對任意x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:漳州模擬 題型:解答題

本題(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1

(Ⅰ) 求矩陣A;
(Ⅱ) 矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)選修4-4:坐標系與參數(shù)方程
已知直角坐標系xOy中,直線l的參數(shù)方程為
x=t-3 
y=
3
(t為參數(shù)).以直角坐標系xOy中的原點O為 極點,x軸的非負半軸為極軸,圓C的極坐標方程為ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐標方程;
(Ⅱ) P為圓C上的點,求P到l距離的取值范圍.
(3)選修4-5:不等式選講
已知關(guān)于x的不等式:|x-1|+|x+2|≥a2+2|a|-5對任意x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案