7.點M(0,2)為圓C:(x-4)2+(y+1)2=25上一點,過M的圓的切線為l,且l與l′:4x-ay+2=0平行,則l與l′之間的距離是( 。
A.$\frac{8}{5}$B.$\frac{4}{5}$C.$\frac{28}{5}$D.$\frac{12}{5}$

分析 求出直線l與l′的方程,即可求出l與l′之間的距離.

解答 解:由題意,kCM=$\frac{2+1}{0-4}$=-$\frac{3}{4}$,
∴kl=$\frac{4}{3}$,∴直線l的方程為4x-3y+6=0
∵l與l′:4x-ay+2=0平行,∴a=3,
∴l(xiāng)與l′之間的距離是$\frac{6-2}{\sqrt{16+9}}$=$\frac{4}{5}$,
故選B.

點評 本題考查直線與圓的位置關(guān)系,考查l與l′之間的距離,求出直線的方程是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,O是坐標(biāo)原點,M、N是單位圓上的兩點,且分別在第一和第三象限,則$|\overrightarrow{OM}+\overrightarrow{ON}|$的范圍為[0.$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.圓x2+y2-2x+4y-3=0上的點到直線x-y+5=0的距離的取值范圍為(2$\sqrt{2}$,6$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.執(zhí)行如圖所示的程序框圖,若輸出的x值為31,則a的值為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知全集U=R,集合A={x|x<-$\frac{1}{2}$或x>1},B={x|-1≤x≤2,x∈Z},則圖中陰影部分所表示的集合等于(  )
A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合A={x∈N|x2-2x-3<0},B={x|lgx>0},則A∩B=( 。
A.{0,1}B.{2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$經(jīng)過點$({1,\frac{{\sqrt{2}}}{2}})$,其離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)若直線y=x+m與C相交于A,B兩點,∠AOB(O為坐標(biāo)原點)為鈍角,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知動圓P過點F(1,0)且和直線l:x=-1相切.
(1)求動點P的軌跡E的方程;
(2)已知點M(-1,0),若過點F的直線與軌跡E交于A,B兩點,求證:直線MA,MB的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.兩個點M(2,-4),N(-2,1)與圓C:x2+y2-2x+4y-4=0的位置關(guān)系是(  )
A.點M在圓C外,點N在圓C外B.點M在圓C內(nèi),點N在圓C外
C.點M在圓C外,點N在圓C內(nèi)D.點M在圓C內(nèi),點N在圓C內(nèi)

查看答案和解析>>

同步練習(xí)冊答案