若x1和x2分別是一元二次方程2x2+5x-3=0的兩個(gè)根,求:
(1)|x1-x2|的值;
(2)
1
x1
+
1
x2
1
x
2
1
+
1
x
2
2
的值;
(3)x12+x22和x13+x23的值.
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)根與系數(shù)的關(guān)系,化簡求值即可.
解答: 解:∵x1和x2分別是一元二次方程2x2+5x-3=0的兩個(gè)根,
∴x1+x2=-
5
2
,x1•x2=-
3
2

(1)∵(x1-x22=(x1+x2)2-4x1x2=
49
4
,
∴|x1-x2|=
7
2

(2))
1
x1
+
1
x2
=
x1+x2
x1x2
=
5
3

x12+x22=(x1+x2)2-2x1x2=(-
5
2
)2-2×(-
3
2
)
=
37
4
,
1
x
2
1
+
1
x
2
2
=
x12+x22
x12x22
=
37
4
(-
3
2
)2
=
37
9
,
(3)x12+x22=(x1+x2)2-2x1x2=(-
5
2
)2-2×(-
3
2
)
=
37
4
,
x13+x23=(x1+x2)(x12+x22-x1x2)=-
5
2
×(
37
4
+
3
2
)
=-
215
8
點(diǎn)評:本題主要考查了根與系數(shù)的關(guān)系,培養(yǎng)學(xué)生的計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合,A={x|x2-(a+1)x+a=0},B={1,2,3}則“A⊆B”是“a=3”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)g(x)=mx2-2mx+n+1(m>0)在區(qū)間[0,3]上有最大值4,最小值0.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)設(shè)f(x)=
g(x)-2x
x
.若f(2x)-k•2x≤0在x∈[-3,3]時(shí)恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)定義區(qū)間(c,d),[c,d),(c,d],[c,d]的長度均為d-c,其中d>c.
(1)已知函數(shù)y=|2x-1|的定義域?yàn)閇a,b],值域?yàn)閇0,
1
2
],寫出區(qū)間[a,b]長度的最大值與最小值.
(2)已知函數(shù)f(x)=2sinx,將函數(shù)y=f(x)的圖象的每點(diǎn)橫坐標(biāo)縮短到原來的
1
2
倍,然后向左平移
π
8
個(gè)單位,再向上平移
3
個(gè)單位,得到函數(shù)y=g(x)的圖象,區(qū)間[a,b](a,b∈R且a<b)滿足:y=g(x)在[a,b]上至少含有2014個(gè)零點(diǎn),在所有滿足上述條件的[a,b]中,求區(qū)間[a,b]長度的最小值.
(3)已知函數(shù)fM(x)的定義域?yàn)閷?shí)數(shù)集D=[-2,2],滿足fM(x)=
x,x∈M
-x,x∉M
,(M是D的非空真子集).集合A=[1,2],B=[-2,-1],求F(x)=
fA∪B(x)
fA(x)+fB(x)+3
的值域所在區(qū)間長度的總和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=-x2+4x+2,x∈[-1,1]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+xlnx.
(1)當(dāng)a=1時(shí),函數(shù)f(x)的圖象在點(diǎn)P(1,f(1))處的切線方程;
(2)當(dāng)a<0時(shí),解不等式f(x)<0;
(3)當(dāng)a=1時(shí),對x∈(1,+∞),直線y=k(x-1)恒在函數(shù)y=f(x)的圖象下方.求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+px+q,不等式f(x)<0的解集是(-2,3)
(1)求實(shí)數(shù)p和q的值;
(2)解不等式qx2+px+1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-a|+2x,a∈R.
(Ⅰ)當(dāng)a=2時(shí),解不等式f(x)≥4x+2的解集;
(Ⅱ)若存在x使f(x)≤-|x+2|+2x+1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P(-2,-3)圓Q:(x-4)2+(y-2)2=9上有兩點(diǎn)A,B且滿足∠PAQ=∠PBQ=
π
2
,
則直線AB的方程為
 

查看答案和解析>>

同步練習(xí)冊答案