【題目】已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于A,B兩點,O為坐標(biāo)原點,若,則雙曲線的離心率__________.
【答案】
【解析】因為雙曲線的兩條漸近線為 ,拋物線的準(zhǔn)線為 ,所以 ,
因此
點睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標(biāo)的范圍等.
【題型】填空題
【結(jié)束】
16
【題目】若函數(shù)滿足:對于圖象上任意一點P,在其圖象上總存在點,使得成立,稱函數(shù)是“特殊對點函數(shù)”.給出下列五個函數(shù):
①;② (其中e為自然對數(shù)的底數(shù));③;④;
⑤.
其中是“特殊對點函數(shù)”的序號是__________.(寫出所有正確的序號)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某特色餐館開通了美團(tuán)外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入(元)之間有如下的對應(yīng)數(shù)據(jù):
外賣份數(shù)(份) | 2 | 4 | 5 | 6 | 8 |
收入(元) | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計外賣份數(shù)為12份時,收入為多少元.
注:①參考公式:線性回歸方程系數(shù)公式, ;
②參考數(shù)據(jù): , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線l:(t為參數(shù))與曲線C:(θ為參數(shù))相交于不同的兩點A,B.
(Ⅰ)若α=,求線段AB中點M的坐標(biāo);
(Ⅱ)若|PA|·|PB|=|OP|,其中P(2,),求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,底面ABC為正三角形,側(cè)棱AA1⊥底面ABC.已知D是BC的中點,AB=AA1=2.
(I)求證:平面AB1D⊥平面BB1C1C;
(II)求證:A1C∥平面AB1D;
(III)求三棱錐A1-AB1D的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三角形ABC中,,,,D是線段BC上一點,且,F為線段AB上一點.
(1)若,求的值;
(2)求的取值范圍;
(3)若為線段的中點,直線與相交于點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足a1=1,且an+1-an=n+1(n∈N*),則數(shù)列{an}的通項公式為________; 前10項的和為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com