計算:
3
×
31.5
×
612
+1g
1
4
-1g25=
 
考點:根式與分數(shù)指數(shù)冪的互化及其化簡運算
專題:計算題
分析:根據(jù)根式與指數(shù)冪的互化結合對數(shù)的運算性質(zhì),進行計算即可.
解答: 解:原式=3
1
2
×(
3
2
)
1
3
×(3×4)
1
6
+lg
1
100

=3
1
2
×3
1
3
×2-
1
3
×3
1
6
×2
1
3
+lg10-2
=3
1
2
+
1
3
+
1
6
×2-
1
3
+
1
3
-2
=3-2=1,
故答案為:1.
點評:本題考查了根式與指數(shù)冪的互化以及對數(shù)的運算性質(zhì),是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)是R上的奇函數(shù),且當x∈(-∞,0]時,f(x)=-xlg(2m-x+
1
2
),當x>0時,不等式f(x)<0恒成立,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設p:
1
2
≤x≤1,q:x2-(2a+1)x+a(a+1)≤0,若非p是非q的必要而不充分條件,則實數(shù)a的取值范圍是(  )
A、[0,
1
2
]
B、(0,
1
2
)
C、(-∞,0]∪[
1
2
,+∞)
D、(-∞,0)∪(
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將半徑為R的4個球完全裝入正四面體中,這個正四面體的高最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知b2=ac且c=2a,求cos B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F1(-4,0)和F2(4,0),曲線上的動點P到F1、F2的距離之差為6,則曲線方程為(  )
A、
x2
9
-
y2
7
=1
B、
y2
9
-
x2
7
=1(y>0)
C、
x2
9
-
y2
7
=1
y2
9
-
x2
7
=1
D、
x2
9
-
y2
7
=1(x>0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x
(x≥0),記y=f-1(x)為其反函數(shù),則f-1(2)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=(a-1)x是指數(shù)函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)滿足f(1+x)=f(1-x),且當x2>x1≥1時,總有[f(x2)-f(x1)]÷(x2-x1)>0恒成立,則f(2x)與f(3x)的大小關系為
 

查看答案和解析>>

同步練習冊答案