【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x﹣4)=﹣f(x),且在區(qū)間[0,2]上是增函數(shù),則( )
A.f(2)<f(5)<f(8)
B.f(5)<f(8)<f(2)
C.f(5)<f(2)<f(8)
D.f(8)<f(2)<f(5)
【答案】B
【解析】解:∵f(x)滿足f(x﹣4)=﹣f(x),
∴取x=5,得f(1)=﹣f(5),即f(5)=﹣f(1)
取x=8,得f(4)=﹣f(8).再取x=4,得f(0)=﹣f(4),可得f(8)=f(0)
∵函數(shù)f(x)是定義在R上的奇函數(shù)
∴f(0)=0,得f(8)=0
∵函數(shù)f(x)在區(qū)間[0,2]上是增函數(shù),
∴f(0)<f(1)<f(2),
可得f(1)是正數(shù),f(5)=﹣f(1)<0,f(2)>0,
因此f(5)<f(8)<f(2)
所以答案是:B
【考點(diǎn)精析】掌握奇偶性與單調(diào)性的綜合是解答本題的根本,需要知道奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣2x﹣3<0},集合B={x|2x+1>1},則BA=( )
A.[3,+∞)
B.(3,+∞)
C.(﹣∞,﹣1]∪[3,+∞)
D.(﹣∞,﹣1)∪(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程x2+ax+a2﹣a﹣2=0的一根大于1,另一根小于1,則a的取值范圍為( )
A.0<a<1
B.a>﹣1
C.﹣1<a<1
D.a<1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(1)=1,f(2)=3,f(3)=4,f(4)=7,f(5)=11,…,則f(10)=( )
A.28
B.76
C.123
D.199
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)和g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論恒成立的是( )
A.f(x)+|g(x)|是偶函數(shù)
B.f(x)﹣|g(x)|是奇函數(shù)
C.|f(x)|+g(x)是偶函數(shù)
D.|f(x)|﹣g(x)是奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級(jí)共有學(xué)生900人,編號(hào)為1,2,3,…,900,現(xiàn)用系統(tǒng)抽樣的方法抽取一個(gè)容量為45的樣本,則抽取的45人中,編號(hào)落在區(qū)間[481,720]的人數(shù)為( )
A.10
B.11
C.12
D.13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(1+x)+f(1﹣x)=0,且f(﹣x)=f(x),當(dāng)1≤x≤2時(shí),f(x)=2x﹣1,求f(2017)( )
A.﹣1
B.0
C.1
D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com