已知雙曲線中心在原點,右焦點與拋物線y2=16x的焦點重合,則該雙曲線的離心率為   
【答案】分析:先求出拋物線y2=16x的焦點坐標(biāo),由此得到雙曲線的右焦點,從而求出a的值,進(jìn)而得到該雙曲線的離心率.
解答:解:∵拋物線y2=16x的焦點是(4,0),
∴c=4,a2=16-9=7,
∴e==
故答案為:
點評:本題考查雙曲線的性質(zhì)和應(yīng)用,考查了學(xué)生對基礎(chǔ)知識的綜合把握能力.解題時要拋物線的性質(zhì)進(jìn)行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點且一個焦點為F(
7
,0),直線y=x-1與其相交于M、N兩點,MN中點的橫坐標(biāo)為-
2
3
,則此雙曲線的方程是( 。
A、
x2
3
-
y2
4
=1
B、
x2
4
-
y2
3
=1
C、
x2
5
-
y2
2
=1
D、
x2
2
-
y2
5
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點,焦點在x軸上,實軸長為2.一條斜率為1的直線經(jīng)過雙曲線的右焦點與雙曲線相交于A、B兩點,以AB為直徑的圓與雙曲線的右準(zhǔn)線相交于M、N.
(1)若雙曲線的離心率2,求圓的半徑;
(2)設(shè)AB中點為H,若
HM
HN
=-
16
3
,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點且一個焦點為F1(-
5
, 0)
,點P位于該雙曲線上,線段PF1的中點坐標(biāo)為(0,2),則雙曲線的方程為(  )
A、
x2
4
-y2=1
B、x2-
y2
4
=1
C、
x2
2
-
y2
3
=1
D、
x2
3
-
y2
2
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點且一個焦點為F(
7
,0),直線y=x-1與其相交于M、N兩點,MN中點的橫坐標(biāo)為-
2
3
,則此雙曲線的方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點,一個焦點為F1(-
5
,0)
,點P在雙曲線上,且線段PF1的中點坐標(biāo)為(0,2),則此雙曲線的離心率是
5
5

查看答案和解析>>

同步練習(xí)冊答案