在學(xué)習(xí)二項(xiàng)式定理時(shí),我們知道楊輝三角中的數(shù)具有兩個(gè)性質(zhì):①每一行中的二項(xiàng)式系數(shù)是“對(duì)稱”的,即第1項(xiàng)與最后一項(xiàng)的二項(xiàng)式系數(shù)相等,第2項(xiàng)與倒數(shù)第2項(xiàng)的二項(xiàng)式系數(shù)相等,……;②圖中每行兩端都是1,而且除1以外的每一個(gè)數(shù)都等于它肩上兩個(gè)數(shù)的和.我們也知道,性質(zhì)①對(duì)應(yīng)于組合數(shù)的一個(gè)性質(zhì):

(1)試寫出性質(zhì)②所對(duì)應(yīng)的組合數(shù)的另一個(gè)性質(zhì);

(2)請(qǐng)利用組合數(shù)的計(jì)算公式對(duì)(1)中組合數(shù)的另一個(gè)性質(zhì)作出證明.

答案:
解析:

  (1) 4分

  (2)因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/3306/0016/05b9a1f101585c25c2817650f8cf68b9/C/Image15.gif" width=134 HEIGHT=44> 2分

   2分

   3分

  所以 1分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在學(xué)習(xí)二項(xiàng)式定理時(shí),我們知道楊輝三角中的數(shù)具有兩個(gè)性質(zhì):①每一行中的二項(xiàng)式系數(shù)是“對(duì)稱”的,即第1項(xiàng)與最后一項(xiàng)的二項(xiàng)式系數(shù)相等,第2項(xiàng)與倒數(shù)第2項(xiàng)的二項(xiàng)式系數(shù)相等,…;②圖中每行兩端都是1,而且除1以外的每一個(gè)數(shù)都等于它肩上兩個(gè)數(shù)的和.我們也知道,性質(zhì)①對(duì)應(yīng)于組合數(shù)的一個(gè)性質(zhì):cnm=Cnn-m
(1)試寫出性質(zhì)②所對(duì)應(yīng)的組合數(shù)的另一個(gè)性質(zhì);
(2)請(qǐng)利用組合數(shù)的計(jì)算公式對(duì)(1)中組合數(shù)的另一個(gè)性質(zhì)作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在學(xué)習(xí)二項(xiàng)式定理時(shí),我們知道楊輝三角中的數(shù)具有兩個(gè)性質(zhì):①每一行中的二項(xiàng)式系數(shù)是“對(duì)稱”的,即第1項(xiàng)與最后一項(xiàng)的二項(xiàng)式系數(shù)相等,第2項(xiàng)與倒數(shù)第2項(xiàng)的二項(xiàng)式系數(shù)相等,…;②圖中每行兩端都是1,而且除1以外的每一個(gè)數(shù)都等于它肩上兩個(gè)數(shù)的和.我們也知道,性質(zhì)①對(duì)應(yīng)于組合數(shù)的一個(gè)性質(zhì):cnm=Cnn-m
(1)試寫出性質(zhì)②所對(duì)應(yīng)的組合數(shù)的另一個(gè)性質(zhì);
(2)請(qǐng)利用組合數(shù)的計(jì)算公式對(duì)(1)中組合數(shù)的另一個(gè)性質(zhì)作出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題共2小題,第一小題4分,第二小題8分,共12分)

在學(xué)習(xí)二項(xiàng)式定理時(shí),我們知道楊輝三角中的數(shù)具有兩個(gè)性質(zhì):① 每一行中的二項(xiàng)式系數(shù)是“對(duì)稱”的,即第1項(xiàng)與最后一項(xiàng)的二項(xiàng)式系數(shù)相等,第2項(xiàng)與倒數(shù)第2項(xiàng)的二項(xiàng)式系數(shù)相等,;② 圖中每行兩端都是1,而且除1以外的每一個(gè)數(shù)都等于它肩上兩個(gè)數(shù)的和.我們也知道,性質(zhì)①對(duì)應(yīng)于組合數(shù)的一個(gè)性質(zhì):

(1)試寫出性質(zhì)②所對(duì)應(yīng)的組合數(shù)的另一個(gè)性質(zhì);

(2)請(qǐng)利用組合數(shù)的計(jì)算公式對(duì)(1)中組合數(shù)的另一個(gè)性質(zhì)作出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案