已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
,直線l:y=
3
(x-4)
關(guān)于直線l1:y=
b
a
x
對稱的直線l′與x軸平行.
(1)求雙曲線的離心率;
(2)若點M(4,0)到雙曲線上的點P的最小距離等于1,求雙曲線的方程.
(1)∵雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)

直線l:y=
3
(x-4)
關(guān)于直線l1:y=
b
a
x
對稱的直線l′與x軸平行,
∴k=
3
,k1=
b
a
,k′=0,
∴|
3
-
b
a
1+
3
b
a
|=|
0-
b
a
1-0•
b
a
|,
解得
b
a
=
3
3
,或
b
a
=-
3
(舍).
b
a
=
3
3
,∴e=
c2
a2
=
1+
b2
a2
=
1+
1
3
=
2
3
3

∴雙曲線的離心率e=
2
3
3

(2)∵
b
a
=
3
3
,∴a2=3b2,∴設(shè)雙曲線為
x2
3b2
-
y2
b2
=1
,
∵點M(4,0)到雙曲線上的點P的最小距離等于1,
∴|
3
b
-4|=1,
解得
3
b
=5,或
3
b
=3.
3
b
=5時,b=
5
3
,∴b2=
25
3
,3b2
=25,
雙曲線方程為
x2
25
-
3y2
25
=1
;
3
b
=3時,b=
3
,b2=3,3b2=9,
雙曲線方程為
x2
9
-
y2
3
=1

∴雙曲線的方程為
x2
25
-
3y2
25
=1或
x2
9
-
y2
3
=1
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率是
2
2
,A1,A2分別是橢圓C的左、右兩個頂點,點F是橢圓C的右焦點.點D是x軸上位于A2右側(cè)的一點,且滿足
1
|A1D|
+
1
|A2D|
=
2
|FD|
=2

(1)求橢圓C的方程以及點D的坐標;
(2)過點D作x軸的垂線n,再作直線l:y=kx+m與橢圓C有且僅有一個公共點P,直線l交直線n于點Q.求證:以線段PQ為直徑的圓恒過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線l:y=ax+1與雙曲線3x2-y2=1有兩個不同的交點,
(1)求a的取值范圍;
(2)設(shè)交點為A,B,是否存在直線l使以AB為直徑的圓恰過原點,若存在就求出直線l的方程,若不存在則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知頂點在原點、對稱軸為坐標軸且開口向右的拋物線過點M(4,-4).
(1)求拋物線的方程;
(2)過拋物線焦點F的直線l與拋物線交于不同的兩點A、B,若|AB|=8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),已知點(1,e)和(e,
3
2
)都在橢圓上,其中e為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)A、B是橢圓上位于x軸上方的兩點,且直線AF1與直線BF2平行,若|AF1|-|BF2|=
6
2
,求直線AF的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓M、拋物線N的焦點均在x軸上的,且M的中心和M的頂點均為原點O,從每條曲線上取兩個點,將其坐標記錄于下表中:
x3-24
2
y-2
3
0-4
2
2
(Ⅰ)求M,N的標準方程;
(Ⅱ)已知定點A(1,
1
2
),過原點O作直線l交橢圓M于B,C兩點,求△ABC面積的最大值和此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓
x2
6
+
y2
5
=1
內(nèi)的一點P(2,-1)的弦,恰好被點P平分,則這條弦所在直線方程( 。
A.y=
5
3
x-
5
6
B.y=
5
3
x-
13
3
C.y=-
5
3
x+
5
6
D.y=
5
3
x+
11
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

y軸上兩定點B1(0,b)、B2(0,-b),x軸上兩動點M,N.P為B1M與B2N的交點,點M,N的橫坐標分別為XM、XN,且始終滿足XMXN=a2(a>b>0且為常數(shù)),試求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y2=-x與直線y=k(x+1)相交于A、B兩點.
(1)求證:OA⊥OB;
(2)當△OAB的面積等于
10
時,求k的值.

查看答案和解析>>

同步練習冊答案