(1)求函數(shù)y=
1
(1-3x)4
的導(dǎo)數(shù).
(2)求函數(shù)f(x)=
x3,x∈[0,1]
x2,x∈(1,2]
2x,x∈(2,3]
在區(qū)間[0,3]上的積分.
分析:(1)利用導(dǎo)數(shù)的運(yùn)算法則即可求得;
(2)利用定積分對(duì)區(qū)間的可加性可得答案;
解答:解:(1)y=(3x-1)-4,
所以y′=-4(3x-1)-5•3=-
12
(3x-1)5
;
所以y′=-4(3x-1)-5•3=-
12
(3x-1)5
,;
(2)所以
3
0
f(x)dx
=
1
0
f(x)dx
+∫
2
1
f(x)dx
+∫
3
2
f(x)dx

=
1
0
x3dx
+∫
2
1
x2dx
+∫
3
2
2xdx

=
1
4
x4
|
1
0
+
1
3
x3
|
2
1
+
1
ln2
2x
|
3
2

=
1
4
+
7
3
+
4
ln2

=
31
12
+
4
ln2
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的運(yùn)算法則、定積分的運(yùn)算性質(zhì),屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象和y軸交于(0,1)且y軸右側(cè)的第一個(gè)最大值、最小值點(diǎn)分別為P(x0,2)和Q(x0+3π,-2).
(1)求函數(shù)y=f(x)的解析式及x0
(2)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(3)如果將y=f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的
1
3
(縱坐標(biāo)不變),然后再將所得圖象沿x軸負(fù)方向平移
π
3
個(gè)單位,最后將y=f(x)圖象上所有點(diǎn)的縱坐標(biāo)縮短到原來的
1
2
(橫坐標(biāo)不變)得到函數(shù)y=g(x)的圖象,寫出函數(shù)y=g(x)的解析式并給出y=|g(x)|的對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合,終邊經(jīng)過點(diǎn)P(-3,
3
)

(1)求行列式
.
sinαtanα
1cosα
.
的值;
(2)若函數(shù)f(x)=cos(x+α)cosα+sin(x+α)sinα(x∈R),
求函數(shù)y=
3
f(
π
2
-2x)+cos2x+1
的最大值,并指出取到最大值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+
b
x
+c
其中b,c為常數(shù)且滿足f(1)=5,f(2)=6.
(1)求b,c的值;
(2)證明:函數(shù)f(x)在區(qū)間(0,1)上是減函數(shù);
(3)求函數(shù)y=f(x),x∈[
1
2
,3]
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asinωx+Bcosωx(其中A、B、ω是非零常數(shù),且ω>0)的最小正周期為2,且當(dāng)x=
1
3
時(shí),f(x)取得最大值2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)求函數(shù)f(x+
1
6
)的單調(diào)遞增區(qū)間,并指出該函數(shù)的圖象可以由函數(shù)y=2sinx,x∈R的圖象經(jīng)過怎樣的變換得到?
(3)在閉區(qū)間[
21
4
,
23
4
]上是否存在f(x)的對(duì)稱軸?如果存在,求出其對(duì)稱軸方程;如果不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•荊州模擬)已知函數(shù)f(x)=
x2+1
-1
x
(x>0),數(shù)列{an}滿足a1=a>0,且an+1=f(an)(n∈N*).
(1)求函數(shù)y=f(x)的反函數(shù);
(2)若數(shù)列{an}的前n項(xiàng)和為Sn,求證:Sn<2a.
(3)若a=1,求證:an>2-n

查看答案和解析>>

同步練習(xí)冊(cè)答案