求函數(shù)y=(x-1)(x-2)(x-3)的導數(shù).
考點:導數(shù)的運算
專題:導數(shù)的概念及應用
分析:根據(jù)導數(shù)的運算法則計算即可
解答: 解:y=(x-1)(x-2)(x-3)=(x2-3x+2)(x-3),
∴y′=(2x-3)(x-3)+(x2-3x+2)=2x2-9x+9+x2-3x+2=3x2-12x+11
點評:本題主要考查了導數(shù)的運算法則,屬于基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={0,1,2,3},B={1,3,4},則A∩B的真子集個數(shù)為(  )
A、2B、3C、4D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求f(x+6)=-f(x)的周期.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AA1=AC=1,BC=
2
,AB=
3
,M是棱B1C1的中點,N是對角線AB1的中點.
(1)求證:CN⊥平面BNM;
(2)求三棱錐M-BCN的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:(lg5)2+lg2•lg50+21+12log24.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知26a=38b=62c(a,b,c均不為0),求a,b,c間滿足的關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在三棱錐D-ABC中,DA⊥底面ABC,底面ABC為等邊三角形,DA=4,AB=3,求外接球的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若異面直線l1,l2的方向向量分別是
a
=(0,-2,-1),
b
=(2,0,4),則異面直線l1與l2的夾角的余弦值等于( 。
A、
2
5
B、-
2
5
C、-
2
5
5
D、
2
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式|mx3-lnx|≥1(m>0),對?x∈(0,1]恒成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習冊答案