用[x]表示不超過x的最大整數(shù),如果f(x)=
2x(x≥0)
[x+1](x<0)
,那么f[f(-0.5)]=
1
1
分析:由已知中[x]表示不超過x的最大整數(shù),如果f(x)=
2x(x≥0)
[x+1](x<0)
,代入先求出f(-0.5),代入可求出f[f(-0.5)].
解答:解:∵[x]表示不超過x的最大整數(shù),
且果f(x)=
2x(x≥0)
[x+1](x<0)
,
∴f(-0.5)=[-0.5+1]=[0.5]=0
∴f[f(-0.5)]=f(0)=20=1
故答案為:1
點評:本題考查的知識點是分段函數(shù)的函數(shù)值,其中遇到嵌套求函數(shù)值的問題時,要注意從內(nèi)到外依次去掉括號.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、設x∈R,用[x]表示不超過x的最大整數(shù),例如[-1.5]=-2,[5.1]=5、則下列對函數(shù)f(x)=[x]所具有的性質說法正確的有
①②③④
.填上正確的編號)①定義域是R,值域是Z;②若x1≤x2,則[x1]≤[x2];③[n+x]=n+[x],其中n∈Z;④[x]≤x<[x]+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•青島一模)定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)∪[3,5)的長度d=(2-1)+(5-3)=3.用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中x∈R.設f(x)=[x]{x},g(x)=x-1,當0≤x≤k時,不等式f(x)<g(x)解集區(qū)間的長度為5,則k的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•內(nèi)江一模)定義區(qū)間(a,b),[a,b),(a,b][a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如(1,2)∪(3,5)的長度為d=(2-1)+(5-3)=3,用[x]表示不超過x的最大整數(shù),記<x>=x-[x],其中x∈R.設f(x)=[x]•<x>,g(x)=2x-[x]-2,若d1,d2,d3分別表示不等式f(x)>g(x)、方程f(x)=g(x)、不等式f(x)<g(x)解集的長度,則當0≤x≤2012時,有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x∈R,用[x]表示不超過x的最大值整數(shù),則y=[x]稱為高斯函數(shù),下列關于高斯函數(shù)的說法正確的有
 

①[-x]=-[x]
②x-1<[x]≤x
③?x,y∈R,[x]+[y]≤[x+y]
④?x≥0,y≥0,[xy]≤[x][y]
⑤離實數(shù)x最近的整數(shù)是-[-x+
12
].

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省青島市高考數(shù)學一模試卷(理科)(解析版) 題型:選擇題

定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為d=b-a,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2)∪[3,5)的長度d=(2-1)+(5-3)=3.用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中x∈R.設f(x)=[x]{x},g(x)=x-1,當0≤x≤k時,不等式f(x)<g(x)解集區(qū)間的長度為5,則k的值為( )
A.6
B.7
C.8
D.9

查看答案和解析>>

同步練習冊答案