函數(shù)y=x2cosx的導(dǎo)數(shù)為(   ).
A.y′=2xcosx-x2sinxB.y′=2xcosx+x2sinx
C. y′=x2cosx-2xsinxD.y′=xcosx-x2sinx

試題分析:因為y=x2cosx,所以,,故選A。
點評:簡單題,利用函數(shù)乘積的導(dǎo)數(shù)運算法則,以及冪函數(shù)、余弦函數(shù)的導(dǎo)數(shù)公式。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)=x+ax2+blnx,曲線y=過P(1,0),且在P點處的切斜線率為2.
(1)求a,b的值;
(2)證明:≤2x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知 ( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)曲線在點處的切線與直線平行,則實數(shù)等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),若存在使得恒成立,則稱  是
一個“下界函數(shù)” .
(I)如果函數(shù)(t為實數(shù))為的一個“下界函數(shù)”,
求t的取值范圍;
(II)設(shè)函數(shù),試問函數(shù)是否存在零點,若存在,求出零點個數(shù);
若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線yx3x+3在點(1,3)處的切線方程為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)曲線()在點(1,1)處的切線與x軸的交點的橫坐標(biāo)為,則=    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的圖象在點(1,)處的切線方程是的值是(   )                                       
A.B.1C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.已知
A.6B.5C.4D.3

查看答案和解析>>

同步練習(xí)冊答案