如果雙曲線-=1上一點P到左焦點的距離為9,則P到右準線的距離為( 。

A.

B.9

C.

D.

解析:雙曲線的離心率為e=.?

設P點的橫坐標為x0,則由焦半徑公式得9=|5+x0|=-5-x0,?

∴x0=-.右準線的方程為x=,

∴P到右準線的距離為+=.

答案: D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①如果橢圓
x2
36
+
y2
9
=1
的一條弦被點A(4,2)平分,那么這條弦所在的直線的斜率為-
1
2
;
②過點P(0,1)與拋物線y2=x有且只有一個交點的直線共有3條.
③雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的焦點到漸近線的距離為b.
④已知拋物線y2=2px上兩點A(x1,x2),B(x2,y2)且OA⊥OB(O為原點),則y1y2=-p2
其中正確的命題有
①②③
①②③
(請寫出你認為正確的命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在下列四個命題中,
①如果一個命題的逆命題為真命題,那么它的否命題一定是真命題.
②方程
x2
2-k
+
y2
k-1
=1
的圖象表示雙曲線的充要條件是k<1或k>2.
③過點M(2,4)作與拋物線y2=8x只有一個公共點的直線l有且只有一條.
④圓x2+y2=4上恰有三個點到直線4x-3y+5=0的距離為1.
正確的有
①②④
①②④
.(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
2
2
,且過點(0,1).
(1)求橢圓C的方程;
(2)如果直線x=t(t∈R)與橢圓相交于A、B,若E(-
2
,0)
D(
2
,0)
,求證:直線EA與直線BD的交點K必在一條確定的雙曲線上;
(3)若直線l經(jīng)過橢圓C的左焦點交橢圓C于P、Q兩點,O為坐標原點,且
OP
OQ
=-
1
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出4個命題:
(1)設橢圓長軸長度為2a(a>0),橢圓上的一點P到一個焦點的距離是
2
3
a
,P到一條準線的距離是
8
3
a
,則此橢圓的離心率為
1
4

(2)若橢圓
x2
a2
+
y2
b2
=1
(a≠b,且a,b為正的常數(shù))的準線上任意一點到兩焦點的距離分別為d1,d2,則|d12-d22|為定值.
(3)如果平面內(nèi)動點M到定直線l的距離與M到定點F的距離之比大于1,那么動點M的軌跡是雙曲線.
(4)過拋物線焦點F的直線與拋物線交于A、B兩點,若A、B在拋物線準線上的射影分別為A1、B1,則FA1⊥FB1
其中正確命題的序號依次是
(2)(4)
(2)(4)
.(把你認為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有對稱中心的曲線叫做有心曲線,過有心曲線中心的弦叫做有心曲線的直徑.定理:如果圓x2+y2=r2(r>0)上異于一條直徑兩個端點的任意一點與這條直徑兩個端點連線的斜率存在,則這兩條直線的斜率乘積為定值-1.寫出該定理在雙曲線
x2
a2
-
y2
b2
=1(a,b>0)
中的推廣
x2
a2
-
y2
b2
=1(a,b>0)
上異于一條直徑兩個端點的任意一點,與這條直徑兩個端點的連線的斜率乘積等于
b2
a2
x2
a2
-
y2
b2
=1(a,b>0)
上異于一條直徑兩個端點的任意一點,與這條直徑兩個端點的連線的斜率乘積等于
b2
a2

查看答案和解析>>

同步練習冊答案