【題目】在一次數(shù)學(xué)競(jìng)賽中,30名參賽學(xué)生的成績(jī)(百分制)的莖葉圖如圖所示:若將參賽學(xué)生按成績(jī)由高到低編為1﹣30號(hào),再用系統(tǒng)抽樣法從中抽取6人,則其中抽取的成績(jī)?cè)赱77,90]內(nèi)的學(xué)生人數(shù)為(

A.2
B.3
C.4
D.5

【答案】C
【解析】解:由莖葉圖可得30名學(xué)生的成績(jī)?nèi)缦拢?
94,94,92,92,91;90,90,88,88,87;
87,85,84,83,83;83,83,82,82,82;
81,80,78,78,77;73,72,71,70,70.
若用系統(tǒng)抽樣,則需分6段,則第2,3,4,5區(qū)間段內(nèi)抽取的學(xué)生成績(jī)符合題意,有4人.
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解莖葉圖的相關(guān)知識(shí),掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cos(2x﹣ )﹣cos2x.
(1)求f( )的值;
(2)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex(x2﹣a),a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若函數(shù)f(x)在(﹣3,0)上單調(diào)遞減,試求a的取值范圍;
(3)若函數(shù)f(x)的最小值為﹣2e,試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)= (a>0,且a≠1)的值域?yàn)椋ī仭蓿?∞),則實(shí)數(shù)a的取值范圍是(
A.(3,+∞)
B.(0, ]
C.(1,3)
D.[ ,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓C: =1的右焦點(diǎn)F,過(guò)焦點(diǎn)F的直線l0⊥x軸,P(x0 , y0)(x0y0≠0)為C上任意一點(diǎn),C在點(diǎn)P處的切線為l,l與l0相交于點(diǎn)M,與直線l1:x=3相交于N.
(I) 求證;直線 =1是橢圓C在點(diǎn)P處的切線;
(Ⅱ)求證: 為定值,并求此定值;
(Ⅲ)請(qǐng)問(wèn)△ONP(O為坐標(biāo)原點(diǎn))的面積是否存在最小值?若存在,請(qǐng)求出最小及此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且3cosAcosB+1=3sinAsinB+cos2C.
(1)求∠C
(2)若△ABC的面積為5 ,b=5,求sinA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化肥廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料.生產(chǎn)1車皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如下表所示:

現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸.在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤(rùn)為2萬(wàn)元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤(rùn)為3萬(wàn)元.分別用x,y表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).

(1)用xy列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(2)問(wèn)分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤(rùn)?并求出此最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如表是一個(gè)由n2個(gè)正數(shù)組成的數(shù)表,用aij表示第i行第j個(gè)數(shù)(i,j∈N),已知數(shù)表中第一列各數(shù)從上到下依次構(gòu)成等差數(shù)列,每一行各數(shù)從左到右依次構(gòu)成等比數(shù)列,且公比都相等.已知a11=1,a31+a61=9,a35=48.

(1)求an1和a4n;
(2)設(shè)bn= +(﹣1)na (n∈N+),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年上半年,股票投資人袁先生同時(shí)投資了甲、乙兩只股票,其中甲股票賺錢的概率為 ,賠錢的概率是 ;乙股票賺錢的概率為 ,賠錢的概率為 .對(duì)于甲股票,若賺錢則會(huì)賺取5萬(wàn)元,若賠錢則損失4萬(wàn)元;對(duì)于乙股票,若賺錢則會(huì)賺取6萬(wàn)元,若賠錢則損失5萬(wàn)元.
(Ⅰ)求袁先生2016年上半年同時(shí)投資甲、乙兩只股票賺錢的概率;
(Ⅱ)試求袁先生2016年上半年同事投資甲、乙兩只股票的總收益的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案