【題目】某少兒游泳隊(duì)需對(duì)隊(duì)員進(jìn)行限時(shí)的仰臥起坐達(dá)標(biāo)測(cè)試.已知隊(duì)員的測(cè)試分?jǐn)?shù)與仰臥起坐
個(gè)數(shù)之間的關(guān)系如下:;測(cè)試規(guī)則:每位隊(duì)員最多進(jìn)行三組測(cè)試,每組限時(shí)1分鐘,當(dāng)一組測(cè)完,測(cè)試成績(jī)達(dá)到60分或以上時(shí),就以此組測(cè)試成績(jī)作為該隊(duì)員的成績(jī),無需再進(jìn)行后續(xù)的測(cè)試,最多進(jìn)行三組;根據(jù)以往的訓(xùn)練統(tǒng)計(jì),隊(duì)員“喵兒”在一分鐘內(nèi)限時(shí)測(cè)試的頻率分布直方圖如下:
(1)計(jì)算值;
(2)以此樣本的頻率作為概率,求
①在本次達(dá)標(biāo)測(cè)試中,“喵兒”得分等于的概率;
②“喵兒”在本次達(dá)標(biāo)測(cè)試中可能得分的分布列及數(shù)學(xué)期望.
【答案】(1);(2)見解析
【解析】
(1)頻率分布直方圖中所有頻率之和為1,由此可求得;
(2)①由頻率分布直方圖可得一次測(cè)試得分的分布列,三組測(cè)試中,“喵兒”得80分為事件A,則“喵兒”可能第一組得80分,或者第二組得80分,或者第三組得80分,由于三組相互獨(dú)立,從而可計(jì)算概率,②仿照①可計(jì)算出三組測(cè)試其得分的概率,得分布列,再由期望公式計(jì)算出期望.
(1)
(2)由直方圖可知,“喵兒”的得分情況如下:
0 | 60 | 80 | 100 | |
0.1 | 0.5 | 0.1 |
①在本次的三組測(cè)試中,“喵兒”得80分為事件A,則“喵兒”可能第一組得80分,或者第二組得80分,或者第三組得80分,則(6分)
②,
,
,
分布列如下:
0 | 60 | 80 | 100 | |
0.001 | 0.555 |
數(shù)學(xué)期望
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】采用系統(tǒng)抽樣方法從1000人中抽取50人做問卷調(diào)查,為此將他們隨機(jī)編號(hào)1,, ,1000,適當(dāng)分組后在第一組采用簡(jiǎn)單隨機(jī)抽樣的方法抽到的號(hào)碼為8,抽到的50人中,編號(hào)落入?yún)^(qū)間的人做問卷A,編號(hào)落入?yún)^(qū)間的人做問卷B,其余的人做問卷C,則抽到的人中,做問卷C的人數(shù)為( )
A. 12 B. 13 C. 14 D. 15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ( x R ,且 e 為自然對(duì)數(shù)的底數(shù)).
⑴ 判斷函數(shù) f x 的單調(diào)性與奇偶性;
⑵是否存在實(shí)數(shù) t ,使不等式對(duì)一切的 x R 都成立?若存在,求出 t 的值,若 不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面幾何中,有邊長(zhǎng)為的正三角形內(nèi)任意點(diǎn)到三邊距離之和為定值.類比上述命題,棱長(zhǎng)為的正四面體內(nèi)任一點(diǎn)到四個(gè)面的距離之和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列說法:
(1)命題“若、都是奇數(shù),則是偶數(shù)”的否命題是“若、都不是奇數(shù),則不是偶數(shù)”;
(2)命題“如果,那么”是真命題;
(3)“或”是“”的必要不充分條件.
那么其中正確的說法有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)為圓上的動(dòng)點(diǎn),點(diǎn)在軸上的投影為,動(dòng)點(diǎn)滿足,動(dòng)點(diǎn)的軌跡為.
(1)求的方程;
(2)設(shè)與軸正半軸的交點(diǎn)為,過點(diǎn)的直線的斜率為,與交于另一點(diǎn)為.若以點(diǎn)為圓心,以線段長(zhǎng)為半徑的圓與有4個(gè)公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黃金分割起源于公元前世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,公元前世紀(jì),古希臘數(shù)學(xué)家歐多克索斯第一個(gè)系統(tǒng)研究了這一問題,公元前年前后歐幾里得撰寫《幾何原本》時(shí)吸收了歐多克索斯的研究成果,進(jìn)一步系統(tǒng)論述了黃金分割,成為最早的有關(guān)黃金分割的論著.黃金分割是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,把稱為黃金分割數(shù). 已知雙曲線的實(shí)軸長(zhǎng)與焦距的比值恰好是黃金分割數(shù),則的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與軸交于點(diǎn),與曲線交于點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的一個(gè)內(nèi)角為,并且三邊長(zhǎng)構(gòu)成公差為4的等差數(shù)列,則的面積為( )
A. 15 B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com