【題目】在平面直角坐標(biāo)系中,P為直線上的動點,動點Q滿足,且原點O在以為直徑的圓上.記動點Q的軌跡為曲線C

1)求曲線C的方程:

2)過點的直線與曲線C交于AB兩點,點D(異于A,B)在C上,直線分別與x軸交于點MN,且,求面積的最小值.

【答案】12

【解析】

1)設(shè)動點,表示出,再由原點O在以為直徑的圓上,轉(zhuǎn)化為,得到曲線C的方程.

2)設(shè)而不解,利用方程思想、韋達(dá)定理構(gòu)建面積的函數(shù)關(guān)系式,再求最小值.

解:(1)由題意,不妨設(shè),則,,

O在以為直徑的圓上,∴,,

,∴曲線C的方程為.

2)設(shè),,,,

依題意,可設(shè)(其中),由方程組消去x并整理,得

,則,,

同理可設(shè),,

可得,

,,

又∵,∴,

,∴,

∴當(dāng)時,面積取得最小值,其最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)函數(shù)內(nèi)有兩個不同零點,求的取值范圍;

2)在第(1)問的條件下判斷當(dāng)時,曲線是否位于軸下方,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進(jìn)站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個問題,決定對機動車停車施行收費制度,收費標(biāo)準(zhǔn)如下:4小時內(nèi)(4小時)每輛每次收費5元;超過4小時不超過6小時,每增加一小時收費增加3元;超過6小時不超過8小時,每增加一小時收費增加4元,超過8小時至24小時內(nèi)(24小時)收費30元;超過24小時,按前述標(biāo)準(zhǔn)重新計費.上述標(biāo)準(zhǔn)不足一小時的按一小時計費.為了調(diào)查該停車場一天的收費情況,現(xiàn)統(tǒng)計1000輛車的停留時間(假設(shè)每輛車一天內(nèi)在該停車場僅停車一次),得到下面的頻數(shù)分布表:

以車輛在停車場停留時間位于各區(qū)間的頻率代替車輛在停車場停留時間位于各區(qū)間的概率.

(1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進(jìn)行進(jìn)一步深入調(diào)研,記錄并統(tǒng)計了停車時長與司機性別的列聯(lián)表:

完成上述列聯(lián)表,并判斷能否有的把握認(rèn)為停車是否超過6小時與性別有關(guān)?

(2)(i)X表示某輛車一天之內(nèi)(含一天)在該停車場停車一次所交費用,求X的概率分布列及期望:

(ii)現(xiàn)隨機抽取該停車場內(nèi)停放的3輛車,表示3輛車中停車費用大于的車輛數(shù),求P()的概率.

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)引進(jìn)現(xiàn)代化管理體制,生產(chǎn)效益明顯提高,2019年全年總收入與2018年全年總收入相比增長了一倍,同時該企業(yè)的各項運營成本也隨著收入的變化發(fā)生相應(yīng)變化,下圖給出了該企業(yè)這兩年不同運營成本占全年總收入的比例,下列說法錯誤的是(

A.該企業(yè)2019年研發(fā)的費用與原材料的費用超過當(dāng)年總收入的50%

B.該企業(yè)2019年設(shè)備支出金額及原材料的費用均與2018相當(dāng)

C.該企業(yè)2019年工資支出總額比2018年多一倍

D.該企業(yè)2018年與2019研發(fā)的總費用占這兩年總收入的20%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,國家為了鼓勵高校畢業(yè)生自主創(chuàng)業(yè),出臺了許多優(yōu)惠政策,以創(chuàng)業(yè)帶動就業(yè).某高校畢業(yè)生小李自主創(chuàng)業(yè)從事海鮮的批發(fā)銷售,他每天以每箱300元的價格購入基圍蝦,然后以每箱500元的價格出售,如果當(dāng)天購入的基圍蝦賣不完,剩余的就作垃圾處理.為了對自己的經(jīng)營狀況有更清晰的把握,他記錄了150天基圍蝦的日銷售量(單位:箱),制成如圖所示的頻數(shù)分布條形圖.

1)若小李一天購進(jìn)12箱基圍蝦.

①求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天的銷售量(單位:箱,)的函數(shù)解析式;

②以這150天記錄的日銷售量的頻率作為概率,求當(dāng)天的利潤不低于1900元的概率;

2)以上述樣本數(shù)據(jù)作為決策的依據(jù),他計劃今后每天購進(jìn)基圍蝦的箱數(shù)相同,并在進(jìn)貨量為11箱,12箱中選擇其一,試幫他確定進(jìn)貨的方案,以使其所獲的日平均利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,,有下述四個結(jié)論:

①若的重心,則

②若邊上的一個動點,則為定值2

③若,邊上的兩個動點,且,則的最小值為

④已知內(nèi)一點,若,且,則的最大值為2

其中所有正確結(jié)論的編號是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列中,已知公差, ,且, , 成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)求.

【答案】(1);(2)100

【解析】試題分析:(1)根據(jù)題意 , 成等比數(shù)列得求出d即可得通項公式;(2)求項的絕對前n項和,首先分清數(shù)列有多少項正數(shù)項和負(fù)數(shù)項,然后正數(shù)項絕對值數(shù)值不變,負(fù)數(shù)項絕對值要變號,從而得,得,由,得,∴ 計算 即可得出結(jié)論

解析:(1)由題意可得,則, ,

,即,

化簡得,解得(舍去).

.

(2)由(1)得時,

,得,由,得,

.

.

點睛:對于數(shù)列第一問首先要熟悉等差和等比通項公式及其性質(zhì)即可輕松解決,對于第二問前n項的絕對值的和問題,首先要找到數(shù)列由多少正數(shù)項和負(fù)數(shù)項,進(jìn)而找到絕對值所影響的項,然后在求解即可得結(jié)論

型】解答
結(jié)束】
18

【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

(I)請將兩家公司各一名推銷員的日工資 (單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;

(II)從兩家公司各隨機選取一名推銷員,對他們過去100天的銷售情況進(jìn)行統(tǒng)計,得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為 (單位: 元),將該頻率視為概率,請回答下面問題:

某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學(xué)的統(tǒng)計學(xué)知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高二年級組織外出參加學(xué)業(yè)水平考試,出行方式為:乘坐學(xué)校定制公交或自行打車前往,大數(shù)據(jù)分析顯示,當(dāng)的學(xué)生選擇自行打車,自行打車的平均時間為 (單位:分鐘) ,而乘坐定制公交的平均時間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當(dāng)在什么范圍內(nèi)時,乘坐定制公交的平均時間少于自行打車的平均時間?

(2)求該校學(xué)生參加考試平均時間的表達(dá)式:討論的單調(diào)性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中,點是線段上的動點,以下結(jié)論:

平面;

;

③三棱錐,體積不變;

中點時,直線與平面所成角最大.

其中正確的序號為( )

A.①④B.②④C.①②③D.①②③④

查看答案和解析>>

同步練習(xí)冊答案