3.(1)已知tan($\frac{π}{4}$+α)=$\frac{1}{2}$;求$\frac{sinα-cosα}{sinα+cosα}$的值.
(2)求sin$\frac{π}{12}$•sin$\frac{5π}{12}$的值.

分析 (1)利用兩角和差的正切公式求得 tanα 的值,再利用同角三角函數(shù)的基本關(guān)系求得要求式子的值.
(2)利用誘導(dǎo)公式、二倍角的正弦公式,求得sin$\frac{π}{12}$•sin$\frac{5π}{12}$的值.

解答 解:(1)∵已知tan($\frac{π}{4}$+α)=$\frac{1+tanα}{1-tanα}$=$\frac{1}{2}$,
∴tanα=-$\frac{1}{3}$,
∴$\frac{sinα-cosα}{sinα+cosα}$=$\frac{tanα-1}{tanα+1}$=-2.
(2)sin$\frac{π}{12}$•sin$\frac{5π}{12}$=sin$\frac{π}{12}$cos$\frac{π}{12}$=$\frac{1}{2}$sin$\frac{π}{6}$=$\frac{1}{4}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、兩角和差的正切公式,誘導(dǎo)公式以及二倍角的正弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.二項(xiàng)式(2x-3y)9的展開(kāi)式中系數(shù)絕對(duì)值之和為59

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知f(x)=$\sqrt{2}$asin(x+$\frac{π}{4}$)+1-a(x∈R).
(1)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),恒有|f(x)|≤2,求實(shí)數(shù)a的取值范圍;
(2)若f(x)=0在[0,$\frac{3π}{4}$]上有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.執(zhí)行如程序圖:若輸入m=1995,n=228,則輸出m的值為57

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若拋物線的準(zhǔn)線方程為x=-5,則拋物線的標(biāo)準(zhǔn)方程為( 。
A.x2=-20yB.x2=20yC.y2=-20xD.y2=20x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=loga(x+3)-1的圖象經(jīng)過(guò)定點(diǎn)A,且點(diǎn)A在直線mx+ny=1(m<0,n<0)上,則$\frac{1}{m}$+$\frac{1}{n}$的最大值為-3-2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若x2f′(x)+xf(x)=sinx(x∈(0,6),f(π)=2,則下列結(jié)論正確的是( 。
A.xf(x)在(0,6)單調(diào)遞減B.xf(x)在(0,6)單調(diào)遞增
C.xf(x)在(0,6)上有極小值2πD.xf(x)在(0,6)上有極大值2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點(diǎn).
(1)求證:平面CFM⊥平面BDF;
(2)若EC=2,F(xiàn)D=3,求平面ADF與平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在平行四邊形ABCD中,AC與BD交于點(diǎn)O,E是線段OD的中點(diǎn),AE的延長(zhǎng)線與CD交于點(diǎn)F,若$\overrightarrow{AC}$=$\overrightarrow a$,$\overrightarrow{BD}$=$\overrightarrow b$,則$\overrightarrow{AF}$=( 。
A.$\frac{1}{4}$$\overrightarrow a$+$\frac{1}{2}$$\overrightarrow b$B.$\frac{1}{2}$$\overrightarrow a$+$\frac{1}{4}$$\overrightarrow b$C.$\frac{2}{3}$$\overrightarrow a$+$\frac{1}{3}$$\overrightarrow b$D.$\frac{1}{2}$$\overrightarrow a$+$\frac{2}{3}$$\overrightarrow b$

查看答案和解析>>

同步練習(xí)冊(cè)答案