已知Rt△ABC的兩條直角邊長分別為a、b,斜邊長為c,則直線ax+by+c=0與圓x2+y2=1的位置關(guān)系是


  1. A.
    相交
  2. B.
    相切
  3. C.
    相離
  4. D.
    相切或相交
B
分析:求出圓心與直線的距離,結(jié)合直角三角形的勾股定理,即可判斷直線與圓的位置關(guān)系.
解答:因?yàn)镽t△ABC的兩條直角邊長分別為a、b,斜邊長為c,
所以c2=a2+b2
圓x2+y2=1圓心(0,0),半徑為r=1,
圓心到直線ax+by+c=0的距離為:=1=r
所以直線與圓相切.
故選B.
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,勾股定理的應(yīng)用,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則BD=
 
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(考生注意:請?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.不等式|x+3|-|x-2|≥3的解集為
 

B.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則
BD
DA
=
 

C.已知圓C的參數(shù)方程為
x=cosα
y=1+sinα
(a為參數(shù))以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ=1,則直線l與圓C的交點(diǎn)的直角坐標(biāo)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(A)(不等式選做題)不等式|x+1|-|x-2|>2的解集為
(
3
2
,+∞)
(
3
2
,+∞)

(B)(幾何證明選做題)如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為6cm,8cm,以AC為直徑的圓與AB交于點(diǎn)D,則AD=
18
5
(或3.6)
18
5
(或3.6)
cm.
(C)(坐標(biāo)系與參數(shù)方程選做題)圓C的參數(shù)方程
x=1+cosα
y=1-sinα
(α為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsinθ=1,則直線l與圓C的交點(diǎn)的直角坐標(biāo)是
(0,1),或(2,1)
(0,1),或(2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:請?jiān)诙}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
(1)(幾何證明選做題)如圖,已知RT△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點(diǎn)D,則
BD
DA
=
16
9
16
9

(2)(坐標(biāo)系與參數(shù)方程選做題)已知圓C的圓心是直線
x=t
y=1+t
(t為參數(shù))與x軸的交點(diǎn),且圓C與直線x+y+3=0相切.則圓C的方程為
(x+1)2+y2=2
(x+1)2+y2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)選做題(請考生在第16題的三個(gè)小題中任選兩題作答,如果全做,則按前兩題記分,要寫出必要的推理與演算過程)
(1)如圖,已知Rt△ABC的兩條直角邊BC,AC的長分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,試求BD的長.
(2)已知曲線C的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),求曲線C上的點(diǎn)到直線x-y+1=0的距離的最大值.
(3)若a,b是正常數(shù),a≠b,x,y∈(0,+∞),則
a2
x
+
b2
y
(a+b)2
x+y
,當(dāng)且僅當(dāng)
a
x
=
b
y
時(shí)上式取等號(hào).請利用以上結(jié)論,求函數(shù)f(x)=
2
x
+
9
1-2x
(x∈0,
1
2
)的最小值.

查看答案和解析>>

同步練習(xí)冊答案