【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購(gòu)買土特產(chǎn)的情況,對(duì)2019年元旦期間的90位游客購(gòu)買情況進(jìn)行統(tǒng)計(jì),得到如下人數(shù)分布表.

購(gòu)買金額(元)

人數(shù)

10

15

20

15

20

10

1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購(gòu)買金額是否少于60元與性別有關(guān).

不少于60

少于60

合計(jì)

40

18

合計(jì)

2)為吸引游客,該超市推出一種優(yōu)惠方案,購(gòu)買金額不少于60元可抽獎(jiǎng)3次,每次中獎(jiǎng)概率為(每次抽獎(jiǎng)互不影響,且的值等于人數(shù)分布表中購(gòu)買金額不少于60元的頻率),中獎(jiǎng)1次減5元,中獎(jiǎng)2次減10元,中獎(jiǎng)3次減15.若游客甲計(jì)劃購(gòu)買80元的土特產(chǎn),請(qǐng)列出實(shí)際付款數(shù)(元)的分布列并求其數(shù)學(xué)期望.

附:參考公式和數(shù)據(jù):.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

【答案】(1)見(jiàn)解析,有的把握認(rèn)為購(gòu)買金額是否少于60元與性別有關(guān).(2)分布列見(jiàn)解析,數(shù)學(xué)期望75

【解析】

1)完善列聯(lián)表,計(jì)算得到答案.

2)先計(jì)算,分別計(jì)算,,,得到分布列,計(jì)算得到答案.

1列聯(lián)表如下:

不少于60

少于60

合計(jì)

12

40

52

18

20

38

合計(jì)

30

60

90

,

因此有的把握認(rèn)為購(gòu)買金額是否少于60元與性別有關(guān).

2可能取值為65,7075,80,且.

,,

,

所以的分布列為

65

70

75

80

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的側(cè)面是正三角形,底面是直角梯形,.

1)求證:;

2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題,其中正確命題有(

A.空間任意三個(gè)不共面的向量都可以作為一個(gè)基底

B.已知向量,則與任何向量都不能構(gòu)成空間的一個(gè)基底

C.是空間四點(diǎn),若不能構(gòu)成空間的一個(gè)基底,那么共面

D.已知向量組是空間的一個(gè)基底,若,則也是空間的一個(gè)基底

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】改革開(kāi)放40年,我國(guó)經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識(shí)也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識(shí),某小組利用假期進(jìn)行一次全市駕駛員交通安全意識(shí)調(diào)查.隨機(jī)抽取男女駕駛員各50人,進(jìn)行問(wèn)卷測(cè)評(píng),所得分?jǐn)?shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識(shí)強(qiáng).

安全意識(shí)強(qiáng)

安全意識(shí)不強(qiáng)

合計(jì)

男性

女性

合計(jì)

(Ⅰ)求的值,并估計(jì)該城市駕駛員交通安全意識(shí)強(qiáng)的概率;

(Ⅱ)已知交通安全意識(shí)強(qiáng)的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識(shí)與性別有關(guān);

(Ⅲ)在(Ⅱ)的條件下,從交通安全意識(shí)強(qiáng)的駕駛員中隨機(jī)抽取2人,求抽到的女性人數(shù)的分布列及期望.

附:,其中

0.010

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在橢圓上,該橢圓的左頂點(diǎn)到直線的距離為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若橢圓外一點(diǎn)滿足,平行于軸,,動(dòng)點(diǎn)在直線上,滿足.設(shè)過(guò)點(diǎn)且垂直的直線,試問(wèn)直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)寫(xiě)出該定點(diǎn),若不過(guò)定點(diǎn)請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面ABCD平面PAD,,,,EPD的中點(diǎn).

證明:;

設(shè),點(diǎn)M在線段PC上且異面直線BMCE所成角的余弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(

A.某班位同學(xué)從文學(xué)、經(jīng)濟(jì)和科技三類不同的圖書(shū)中任選一類,不同的結(jié)果共有種;

B.甲乙兩人獨(dú)立地解題,已知各人能解出的概率分別是,則題被解出的概率是;

C.某校名教師的職稱分布情況如下:高級(jí)占比,中級(jí)占比,初級(jí)占比,現(xiàn)從中抽取名教師做樣本,若采用分層抽樣方法,則高級(jí)教師應(yīng)抽取人;

D.兩位男生和兩位女生隨機(jī)排成一列,則兩位女生不相鄰的概率是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn2ann.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè),記數(shù)列{bn}的前n項(xiàng)和為T(mén)n,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓Ax2+y2+2x-15=0和定點(diǎn)B1,0),M是圓A上任意一點(diǎn),線段MB的垂直平分線交MA于點(diǎn)N,設(shè)點(diǎn)N的軌跡為C

(Ⅰ)求C的方程;

(Ⅱ)若直線y=kx-1)與曲線C相交于PQ兩點(diǎn),試問(wèn):在x軸上是否存在定點(diǎn)R,使當(dāng)k變化時(shí),總有∠ORP=ORQ?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案