16.設(shè)已知各項(xiàng)均為正數(shù)的數(shù)列{an}前n項(xiàng)和為Sn,且Sn+Sn-1=tan2+2(n≥2,t>0),a1=1.求數(shù)列{an}的通項(xiàng)公式.

分析 仿寫另一個(gè)等式,兩個(gè)式子相減得到數(shù)列的項(xiàng)的遞推關(guān)系,利用等差數(shù)列的定義及等差數(shù)列的通項(xiàng)公式求得

解答 解:(1)Sn+Sn-1=tan2+2  (n≥2,t>0)(1)
Sn-1+Sn-2=tan-12+2(n≥3)(2)
(1)-(2)得an+an-1=t(an2-an-12),(n≥3),
∵數(shù)列{an}為正項(xiàng)數(shù)列,∴an-an-1=$\frac{1}{t}$,(n≥3),
即數(shù)列{an}從第二項(xiàng)開始是公差為$\frac{1}{t}$的等差數(shù)列.
∴an=$\left\{\begin{array}{l}{1,n=1}\\{\frac{n-1}{t},n≥2}\end{array}\right.$.

點(diǎn)評(píng) 本題考查的是數(shù)列通項(xiàng)公式的問(wèn)題,在解答的過(guò)程當(dāng)中充分體現(xiàn)了通項(xiàng)與前n項(xiàng)和的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.定義在(-1,1)內(nèi)的函數(shù)f(x)滿足2f(x)-f(-x)=x+1,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖,當(dāng)n0=6時(shí),輸出的i,n的值分別為(  )
A.8,1B.7,1C.8,2D.7,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.等邊△ABC的邊長(zhǎng)為2,且$3\overrightarrow{AE}=2\overrightarrow{AC},2\overrightarrow{BD}=\overrightarrow{BC}$,則$\overrightarrow{BE}•\overrightarrow{AD}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.由a,a2組成的集合中含有兩個(gè)元素,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),直線l1:y=$\frac{a}$x-b被橢圓截得的弦長(zhǎng)為2$\sqrt{2}$,且橢圓離心率e=$\frac{\sqrt{6}}{3}$,過(guò)橢圓C的右焦點(diǎn)且斜率為$\sqrt{3}$的直線l2被橢圓C截的弦為AB.
(1)求橢圓的方程;
(2)弦AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在“市長(zhǎng)峰會(huì)”期間,某高校有14名志愿者參加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,則開幕式當(dāng)天不同的接待排班種數(shù)為C144C104C64(用式子表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.P={x|x2-2x-3=0},S={x|ax+2=0},S⊆P,求a取值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求下列函數(shù)的導(dǎo)數(shù):
(1)f(x)=ln5;
(2)f(x)=2x;
(3)f(x)=lgx;
(4)f(x)=cosx tanx.

查看答案和解析>>

同步練習(xí)冊(cè)答案