要證明
3
+
7
<2
5
,可選擇的方法有以下幾種,其中最合理的是( 。
A.綜合法B.分析法C.反證法D.歸納法
用分析法證明如下:要證明
3
+
7
<2
5

需證(
3
+
7
)
2
(2
5
)
2
,
即證10+2
21
<20,
即證
21
<5,即證21<25,顯然成立,
故原結論成立.
綜合法:∵(
練習冊系列答案
年級 高中課程 年級 初中課程
高一 高一免費課程推薦! 初一 初一免費課程推薦!
高二 高二免費課程推薦! 初二 初二免費課程推薦!
高三 高三免費課程推薦! 初三 初三免費課程推薦!
相關習題

科目:高中數(shù)學 來源: 題型:

要證明
3
+
7
<2
5
,可選擇的方法有以下幾種,其中最合理的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

隨著環(huán)保理念的深入,用建筑鋼材余料創(chuàng)作城市雕塑逐漸流行.下圖是其中一個抽象派雕塑的設計圖.圖中α表示水平地面,線段AB表示的鋼管固定在α上;為了美感,需在焊接時保證:線段AC表示的鋼管垂直于α,BD⊥AB,且保持BD與AC異面.
(1)若收集到的余料長度如下:AC=BD=24(單位長度),AB=7,CD=25,按現(xiàn)在手中的材料,求BD與α應成的角;
(2)設計師想在AB,CD中點M,N處再焊接一根連接管,然后掛一個與AC,BD同時平
行的平面板裝飾物.但他擔心此設計不一定能實現(xiàn).請你替他打消疑慮:無論AB,CD多長,焊接角度怎樣,一定存在一個過MN的平面與AC,BD同時平行(即證明向量
MN
AC
BD
共面,寫出證明過程);
(3)如果事先能收集確定的材料只有AC=BD=24,請?zhí)嬖O計師打消另一個疑慮:即MN要準備多長不用視AB,CD長度而定,只與θ有關(θ為設計的BD與α所成的角),寫出MN與θ的關系式,并幫他算出無論如何設計MN都一定夠用的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都市樹德中學高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

隨著環(huán)保理念的深入,用建筑鋼材余料創(chuàng)作城市雕塑逐漸流行.下圖是其中一個抽象派雕塑的設計圖.圖中α表示水平地面,線段AB表示的鋼管固定在α上;為了美感,需在焊接時保證:線段AC表示的鋼管垂直于α,BD⊥AB,且保持BD與AC異面.
(1)若收集到的余料長度如下:AC=BD=24(單位長度),AB=7,CD=25,按現(xiàn)在手中的材料,求BD與α應成的角;
(2)設計師想在AB,CD中點M,N處再焊接一根連接管,然后掛一個與AC,BD同時平
行的平面板裝飾物.但他擔心此設計不一定能實現(xiàn).請你替他打消疑慮:無論AB,CD多長,焊接角度怎樣,一定存在一個過MN的平面與AC,BD同時平行(即證明向量,共面,寫出證明過程);
(3)如果事先能收集確定的材料只有AC=BD=24,請?zhí)嬖O計師打消另一個疑慮:即MN要準備多長不用視AB,CD長度而定,只與θ有關(θ為設計的BD與α所成的角),寫出MN與θ的關系式,并幫他算出無論如何設計MN都一定夠用的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都市樹德中學高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

隨著環(huán)保理念的深入,用建筑鋼材余料創(chuàng)作城市雕塑逐漸流行.下圖是其中一個抽象派雕塑的設計圖.圖中α表示水平地面,線段AB表示的鋼管固定在α上;為了美感,需在焊接時保證:線段AC表示的鋼管垂直于α,BD⊥AB,且保持BD與AC異面.
(1)若收集到的余料長度如下:AC=BD=24(單位長度),AB=7,CD=25,按現(xiàn)在手中的材料,求BD與α應成的角;
(2)設計師想在AB,CD中點M,N處再焊接一根連接管,然后掛一個與AC,BD同時平
行的平面板裝飾物.但他擔心此設計不一定能實現(xiàn).請你替他打消疑慮:無論AB,CD多長,焊接角度怎樣,一定存在一個過MN的平面與AC,BD同時平行(即證明向量,共面,寫出證明過程);
(3)如果事先能收集確定的材料只有AC=BD=24,請?zhí)嬖O計師打消另一個疑慮:即MN要準備多長不用視AB,CD長度而定,只與θ有關(θ為設計的BD與α所成的角),寫出MN與θ的關系式,并幫他算出無論如何設計MN都一定夠用的長度.

查看答案和解析>>

同步練習冊答案