【題目】本小題滿分13分)

工作人員需進入核電站完成某項具有高輻射危險的任務,每次只派一個人進去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內(nèi)不能完成任務則撤出,再派下一個人.現(xiàn)在一共只有甲、乙、丙三個人可派,他們各自能完成任務的概率分別,假設互不相等,且假定各人能否完成任務的事件相互獨立.

1)如果按甲在先,乙次之,丙最后的順序派人,求任務能被完成的概率.若改變?nèi)齻人被派出的先后順序,任務能被完成的概率是否發(fā)生變化?

2)若按某指定順序派人,這三個人各自能完成任務的概率依次為,其中的一個排列,求所需派出人員數(shù)目的分布列和均值(數(shù)字期望)

3)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)字期望)達到最。

【答案】1 不變化;(2;(3)先派甲,再派乙,最后派丙時, 均值(數(shù)字期望)達到最小

【解析】

1)按甲在先,乙次之,丙最后的順序派人,任務能被完成的概率為

若甲在先,丙次之,乙最后的順序派人,任務能被完成的概率為,

發(fā)現(xiàn)任務能完成的概率是一樣.

同理可以驗證,不論如何改變?nèi)齻人被派出的先后順序,任務能被完成的概率不發(fā)生變化.

2)由題意得可能取值為

其分布列為:









3,

要使所需派出的人員數(shù)目的均值(數(shù)字期望)達到最小,

則只能先派甲、乙中的一人.

若先派甲,再派乙,最后派丙,

若先派乙,再派甲,最后派丙, ,

先派甲,再派乙,最后派丙時, 均值(數(shù)字期望)達到最。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,四邊形是矩形,點,點,點.以點為中心,順時針旋轉(zhuǎn)矩形,得到矩形,點的對應點分別為.

(1)如圖①,當點落在邊上時,求點的坐標;

(2)如圖②,當點落在線段上時,交于點.

①求證;②求點的坐標.

(3)記為矩形對角線的交點,的面積,求的取值范圍(直接寫出結果即可).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商家通過市場調(diào)研,發(fā)現(xiàn)某商品的銷售價格y(元/件)和銷售量x(件)有關,其關系可用圖中的折線段表示(不包含端點A.

1)把y表示成x的函數(shù);

2)若該商品進貨價格為12/件,則商家賣出多少件時可以獲得最大利潤?最大利潤為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

1)若函數(shù),求函數(shù)的極值;

2)討論函數(shù)在定義域內(nèi)極值點的個數(shù);

3)設直線為函數(shù)的圖象上一點處的切線,證明:在區(qū)間上存在唯一的,使得直線與曲線相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,·=0,||=12,||=15,l為線段BC的垂直平分線,lBC交于點D,El上異于D的任意一點.

(1)求·的值;

(2)判斷·的值是否為一個常數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程是 (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標方程;

(Ⅱ)已知直線與曲線交于 兩點,與軸交于點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子中有四個小球,分別寫有美、麗、中、國四個字,有放回地從中任取一個小球,直到“國”兩個字都取到就停止,用隨機模擬的方法估計恰好在第三次停止的概率.利用電腦隨機產(chǎn)生03之間取整數(shù)值的隨機數(shù),分別用0,1,2,3代表中、國、美、麗這四個字,以每三個隨機數(shù)為一組,表示取球三次的結果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):

232 321 230 023 123 021 132 220 001

231 130 133 231 031 320 122 103 233

由此可以估計,恰好第三次就停止的概率為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的單調(diào)區(qū)間和極值;

(2)若不等式恒成立,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某企業(yè)的兩座建筑物ABCD的高度分別為20m和40m,其底部BD之間距離為20m.為響應創(chuàng)建文明城市號召,進行亮化改造,現(xiàn)欲在建筑物AB的頂部A處安裝一投影設備,投影到建筑物CD上形成投影幕墻,既達到亮化目的又可以進行廣告宣傳.已知投影設備的投影張角∠EAF,投影幕墻的高度EF越小,投影的圖像越清晰.設投影光線的上邊沿AE與水平線AG所成角為α,幕墻的高度EFy(m).

(1)求y關于α的函數(shù)關系式,并求出定義域;

(2)當投影的圖像最清晰時,求幕墻EF的高度.

查看答案和解析>>

同步練習冊答案