集合A1,A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一種分拆,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時,(A1,A2)與(A2,A1)為集合A的同一種分拆,則集合A={a,b,c}的不同分拆種數(shù)為多少?
分析:考慮集合A1為空集,有一個元素,2個元素,和集合A相等四種情況,由題中規(guī)定的新定義分別求出各自的分析種數(shù),然后把各自的分析種數(shù)相加,即可求出值.當(dāng)A1為A時,A2可取A的任何子集,此時A2有8種情況,故拆法為8種;總之,共27種拆法.
解答:解:當(dāng)A1=φ時,A2=A,此時只有1種分拆;
當(dāng)A1為單元素集時,A2=?AA1或A,此時A1有三種情況,故拆法為6種;
當(dāng)A1為雙元素集時,如A1={a,b},A2={c}、{a,c}、{b,c}、{a,b,c},此時A1有三種情況,故拆法為12種;
當(dāng)A1為A時,A2可取A的任何子集,此時A2有8種情況,故拆法為8種;
綜上,共27種拆法.
點評:本題屬于創(chuàng)新型的概念理解題,準(zhǔn)確地理解拆分的定義,以及靈活運用集合并集的運算和分類討論思想是解決本題的關(guān)鍵所在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

9、若集合A1,A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一種分析,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時,(A1,A2)與(A2,A1)為集合A的同一種分析,則集合A={a1,a2,a3}的不同分析種數(shù)是
27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A1、A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一種拆分,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時,(A1,A2)與(A2,A1)為集合A的同一種拆分,則集合A={1,2}的不同拆分的種數(shù)是
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A1,A2滿足A1∪A2={a,b},則滿足條件的集合A1,A2總共有
9
9
組.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A1,A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一種分拆,并規(guī)定:當(dāng)且僅當(dāng)A1=A2時,(A1,A2)與(A2,A1)為集合A的同一種分拆,
(1)集合A={a,b}的不同分拆種數(shù)為多少?
(2)集合A={a,b,c}的不同分拆種數(shù)為多少?
(3)由上述兩題歸納一般的情形:集合A={a1,a2,a3,…an}的不同分拆種數(shù)為多少?(不必證明)

查看答案和解析>>

同步練習(xí)冊答案