17.求下列函數(shù)的值域.
(1)y=$\frac{1}{{x}^{2}+2}$;
(2)y=$\frac{2x-3}{x+1}$;
(3)y=$\sqrt{-{x}^{2}+2x+1}$;
(4)y=2x-$\sqrt{x-1}$.

分析 分別根據(jù)分式函數(shù)的性質(zhì),換元法將函數(shù)進(jìn)行轉(zhuǎn)化求解即可得到結(jié)論.

解答 解:(1)∵x2+2≥2,∴y=$\frac{1}{{x}^{2}+2}$∈(0,$\frac{1}{2}$],則函數(shù)的值域為(0,$\frac{1}{2}$];
(2)y=$\frac{2x-3}{x+1}$=$\frac{2(x+1)-5}{x+1}$=2-$\frac{5}{x+1}$,則y≠2,即函數(shù)的值域為(-∞,2)∪(2,+∞);
(3)y=$\sqrt{-{x}^{2}+2x+1}$=$\sqrt{-(x-1)^{2}+2}$∈[0,$\sqrt{2}$];即函數(shù)的值域為∈[0,$\sqrt{2}$];
(4)由x-1≥0得x≥1,則函數(shù)的定義域為[1,+∞),
設(shè)t=$\sqrt{x-1}$,則t≥0,則x-1=t2,x=t2+1,
則函數(shù)等價為y=2(t2+1)-t=2t2-t+2=2(t-$\frac{1}{4}$)2+$\frac{15}{8}$,
對稱軸為t=$\frac{1}{4}$,
∵t≥0,∴y≥$\frac{15}{8}$,
即函數(shù)的值域為[$\frac{15}{8}$,+∞).

點評 本題主要考查函數(shù)值域的求解,利用分式函數(shù)的性質(zhì),換元法將函數(shù)轉(zhuǎn)化為關(guān)于t的一元二次函數(shù),利用一元二次函數(shù)單調(diào)性的性質(zhì)進(jìn)行求解是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.2014年12月初,南京查獲了一批問題牛肉,滁州市食藥監(jiān)局經(jīng)民眾舉報獲知某地6個儲存牛肉的冷庫有1個冷庫牛肉被病毒感染,需要通過對庫存牛肉抽樣化驗病毒DNA來確定感染牛肉,以免民眾食用有損身體健康.下面是兩種化驗方案:
方案甲:逐個化驗樣品,直到能確定感染冷庫為止.
方案乙:將樣品分為兩組,每組三個,并將它們混合在一起化驗,若存在病毒DNA,則表明感染牛肉在這三個樣品當(dāng)中,然后逐個化驗,直到確定感染冷庫為止;若結(jié)果不含病毒DNA,則在另外一組樣品中逐個進(jìn)行化驗.
(1)求依據(jù)方案乙所需化驗恰好為2次的概率.
(2)首次化驗化驗費為10元,第二次化驗化驗費為8元,第三次及其以后每次化驗費都是6元,列出方案甲所需化驗費用的分布列,并估計用方案甲平均需要化驗費多少元?
(3)試比較兩種方案,估計哪種方案有利于盡快查找到感染冷庫.說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知△ABC的面積為S,在邊AB上任取一點P,則△PAC的面積大于$\frac{S}{3}$的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(文科學(xué)生做)設(shè)函數(shù)f(x)=mx3+xsinx(m≠0),若f($\frac{π}{6}$)=-$\frac{π}{3}$,則f(-$\frac{π}{6}$)=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知A,B,C是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的左、右、上頂點,點P是橢圓E上不同于A,B,C的一動點,若橢圓E的長軸長為4,且直線CA,CB的斜率滿足kCA•kCB=-$\frac{1}{4}$.
(1)求橢圓E的方程;
(2)直線AC與PB交于點M,直線CP交x軸與點N,
①當(dāng)點M在以AB為直徑的圓上時,求點P的橫坐標(biāo);
②試問:$\frac{1}{{k}_{MN}}$-$\frac{1}{{k}_{CP}}$(kMN,kCP表示直線MN,CP的斜率)是否為定值?若是,求出該定值;若不是.請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)y=log2x-1與y=22-x的圖象的交點為(x0,y0),則x0所在區(qū)間是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知復(fù)數(shù)z=$\frac{ai+1}{2-i}$(a∈R,i為虛數(shù)單位)是純虛數(shù),則a的值為( 。
A.1B.2C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)等比數(shù)列{an}中,如果a1+a3=5,a2+a4=10
(1)首項a1和公比q;
(2)該數(shù)列的前6項的和S6的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在區(qū)間[-1,4]內(nèi)任取一個實數(shù)a,則方程x2+2x+a=0存在兩個負(fù)數(shù)根的概率為$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊答案