如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=2,AA1=4,M、N分別為CC1、A1C2的中點(diǎn).
(I)求證:AM⊥平面B1MN;
(II)求二面角M-AB1-A1的大。

【答案】分析:(I)要證明AM⊥平面B1MN,只需證明AM垂直平面B1MN內(nèi)兩條相交直線即可,利用平面A1B1C1⊥平面A1ACC1證明AM⊥B1N.
再利用勾股定理證明AM⊥MN,而B1N,MN為平面B1MN內(nèi)兩條相交直線,所以可證AM⊥平面B1MN.
(II)要求二面角M-AB1-A1的大小,只需求其平面角的大小,先利用三垂線法找二面角M-AB1-A1的平面角,再放入直角三角形中,解三角形即可.
解答:解:(I)∵ABC-A1B1C1是直三棱柱,∴平面A1B1C1⊥平面A1ACC1;
∵AB=BC,進(jìn)而A1B1=B1C1,
N為A1C1的中點(diǎn),
∴B1N⊥平面A1ACC1
∵AM?平面A1ACC1,
∴B1N⊥AM,即AM⊥B1N.
在側(cè)面A1ACC1中,C1M=CM=2,
C1N=,AC=2,∴Rt△MC1N∽Rt△ACM,
∴∠C1MN+∠CMA=90°,
∴AM⊥MN.
∵B1N∩MN=N,∴AM⊥平面B1MN.  
(II)取BB1的中點(diǎn)為D,連接MD,則MD⊥平面A1AB1,作DE⊥AB1,垂足為E,連接ME,則ME⊥AB1,∠MED為二面角M-AB1-A1的補(bǔ)角.
,
,
∠MED=arctan,…(11分)
故二面角M-AB1-A1的大小為π-arctan

點(diǎn)評:本題考查了線面垂直的判定,以及二面角的求法,屬于立體幾何中的常規(guī)題,應(yīng)當(dāng)掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

 

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

 (本小題共l2分)

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點(diǎn),P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA。
(I)求證:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點(diǎn)C到平面B1DP的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

    如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點(diǎn),P是AD的延長線與A1C1的延長線的交點(diǎn),且PB1∥平面BDA.

(I)求證:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求點(diǎn)C到平面B1DP的距離.

查看答案和解析>>

同步練習(xí)冊答案