已知點與點在直線的兩側,則下列說法
① ; ② 時,有最小值,無最大值;
③ 恒成立;
④ 當,, 則的取值范圍為(-;
其中正確的命題是 (填上正確命題的序號).
科目:高中數學 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
AD |
EB |
查看答案和解析>>
科目:高中數學 來源: 題型:
(滿分14分)設,在平面直角坐標系中,已知向量,向量,,動點的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)已知,證明:存在圓心在原點的圓,使得該圓的任意一條切線與軌跡E恒有兩個交點A,B,且(O為坐標原點),并求出該圓的方程;
(3)已知,設直線與圓C:(1<R<2)相切于A1,且與軌跡E只有一個公共點B1,當R為何值時,|A1B1|取得最大值?并求最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
(2012年高考全國卷理科21)(本小題滿分12分)(注意:在試卷上作答無效)
已知拋物線與圓 有一個公共點,且在處兩曲線的切線為同一直線。
(1)求;
(2)設、是異于且與及都相切的兩條直線,、的交點為,求到的距離。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com