設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若
S3
S6
=
1
3
,則
S6
S12
=
3
10
3
10
分析:可得S3,S6-S3,S9-S6,S12-S9成等差數(shù)列,由此可得S6=3S3,S9=6S3,S12=10S3,代入化簡可得.
解答:解:由等差數(shù)列的性質(zhì)可得S3,S6-S3,S9-S6,S12-S9成等差數(shù)列,
S3
S6
=
1
3
可得S6=3S3,故S6-S3=2S3,
故S9-S6=3S3,S12-S9=4S3,
解之可得S9=6S3,S12=10S3
S6
S12
=
3S3
10S3
=
3
10

故答案為:
3
10
點(diǎn)評:本題考查等差數(shù)列的性質(zhì),用S3表示其余的項(xiàng)是解決問題的關(guān)鍵,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個(gè)命題:
①對于任意實(shí)數(shù)a、b、c,若a>b,c≠0,則ac>bc;
②設(shè)Sn 是等差數(shù)列{an}的前n項(xiàng)和,若a2+a6+a10為一個(gè)確定的常數(shù),則S11也是一個(gè)確定的常數(shù);
③關(guān)于x的不等式ax+b>0的解集為(-∞,1),則關(guān)于x的不等式
bx-ax+2
>0的解集為(-2,-1);
④對于任意實(shí)數(shù)a、b、c、d,若a>b>0,c>d則ac>bd.
其中正確命題的是
 
(把正確的答案題號填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,S3=3(a2+a8),則
a3
a5
的值為( 。
A、
1
6
B、
1
3
C、
3
5
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,a12=-8,S9=-9,則S16=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,且a4=-4,a9=4,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,a1=2,a5=3a3,則S9=( 。

查看答案和解析>>

同步練習(xí)冊答案