如圖甲,⊙O的直徑AB=2,圓上兩點C、D 在直徑AB 的兩側(cè),使數(shù)學(xué)公式.沿直徑AB 折起,使兩個半圓所在的平面互相垂直(如圖乙),F(xiàn) 為BC的中點,E 為AO 的中點.根據(jù)圖乙解答下列各題:
(1)求三棱錐C-BOD 的體積;
(2)求證:CB⊥DE;
(3)在BD弧上是否存在一點 G,使得FG∥平面 ACD?若存在,試確定點G 的位置;若不存在,請說明理由.

(1)解:∵C為圓周上一點,且AB為直徑,∴∠C=90°,
,∴AC=BC,
∵O為AB中點,∴CO⊥AB,
∵AB=2,∴CO=1.
∵兩個半圓所在平面ACB與平面ADB互相垂直且其交線為AB,
∴CO⊥平面ABD,∴CO⊥平面BOD.
∴CO就是點C到平面BOD的距離,
在Rt△ABD中,,

(2)在△AOD中,∵∠OAD=60°,OA=OD,∴△AOD為正三角形,
又∵E為OA的中點,∴DE⊥AO,
∵兩個半圓所在平面ACB與平面ADB互相垂直且其交線為AB,∴DE⊥平面ABC.
∴CB⊥DE.
(3)存在,G為的中點.證明如下:
連接OG,OF,F(xiàn)G,
∴OG⊥BD,
∵AB為⊙O的直徑,
∴AD⊥BD
∴OG∥AD,
∵OG?平面ACD,AD?平面ACD,
∴OG∥平面ACD.
在△ABC中,O,F(xiàn)分別為AB,BC的中點,∴OF∥AC,
又OF?平面ACD,∴OF∥平面ACD,
∵OG∩OF=O,
∴平面OFG∥平面ACD,
又FG?平面OFG,∴FG∥平面ACD.
分析:(1)利用圓的性質(zhì)可得CO⊥AB,利用面面垂直的性質(zhì)可得CO⊥平面BOD.在計算出,利用三棱錐的體積即可得出;
(2)利用等邊三角形的性質(zhì)可得DE⊥AO,再利用面面垂直的性質(zhì)定理即可得到DE⊥平面ABC,進而得出結(jié)論.
(3)存在,G為的中點.連接OG,OF,F(xiàn)G,通過證明平面OFG∥平面ACD,即可得到結(jié)論.
點評:本題主要考察空間點、線、面位置關(guān)系,考查空間想象能力、運算能力和邏輯推理能力.熟練掌握圓的性質(zhì)、面面垂直的性質(zhì)、三棱錐的體積計算公式、等邊三角形的性質(zhì)、線面垂直的判定定理、三角形的中位線定理、面面平行的判定和性質(zhì)定理是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:四川省南充高中08-09學(xué)年高二下學(xué)期第四次月考(理) 題型:解答題

 如圖甲,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點C為圓周上異于A、B的一點.

(1)若一個面體中有個面是直角三角形,則稱這個面體的直度為.那么四面體的直度為多少?說明理由;

(2)在四面體中,,設(shè).若動點在四面體 表面上運動,并且總保持.設(shè)為動點的軌跡圍成的封閉圖形的面積關(guān)于角的函數(shù),求取最大值時,二面角的正切值.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案